Idaho Traffic Collisions

2002

DONT RISK ITE

Idaho Transportation Department
Office of Highway Safety

IDAHO TRAFFIC COLLISIONS

2002

Prepared by the Idaho Office of Highway Safety

IDAHO TRANSPORTATION DEPARTMENT

P.O. Box 7129

Boise, Idaho 83707-1129
(208) 334-8100

Idaho Office of Highway Safety Web Address:
http://www2.state.id.us/itd/highways/ohs

Table of Contents

Page

Introduction 1
Explanation of Data 1
Statewide Collision Categories 2
Fatality and Injury Rates 4
Injury Severity 6
Economic Cost of Collisions 6
Collisions by Number of Units Involved 8
Collisions and Injuries by Month 11
Collisions by Day of the Week 12
Collisions by Time of Day 13
Collisions by Roadway Classification 14
Collisions by Idaho Counties and Cities 16
Driver Age Distribution 22
Driver Age and Collision Involvement 23
Driver Gender Information 24
Collision Involvement by Driver Age and Gender 25
Contributing Circumstances in Collisions 26
Traffic Violations and Driver's License Suspensions 27
Impaired Driving 31
Economic Costs of Impaired Driving Collisions 32
Victims of Fatal Collisions Involving Impaired Drivers 32
Impaired Driving by Age 33
Impaired Driving by Counties and Cities 34
Safety Restraint Usage 38
Observational Seat Belt Survey Results 39
Self-Reported Seat Belt Usage Results 41
Costs of Injuries 41
Child Safety Seat - Self-Reported Usage 42
Local Safety Restraint Usage 43
Aggressive Driving 45
Involvement in Aggressive Driving Collisions by Driver Age 46
Youthful Drivers 47
Emergency Medical Services 48
Pedestrians in Collisions 49
Bicyclists in Collisions 50
Motorcyclists in Collisions 51
Commercial Motor Vehicles in Collisions 52
Motor Vehicle Collisions in Work Zones 56
Glossary of Terms 58
References and Notes. 60
APPENDIX A: Maps of Fatal Collision Locations 61
APPENDIX B: State Highway System Crash Data 70
APPENDIX C: Five-Year Collision History 85

Introduction

Idaho Traffic Collisions 2002 provides an annual description of motor vehicle collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of coping with the increasing costs of traffic collisions. Agencies use the data to identify traffic safety problems and target areas for the development of collision reduction programs.

A traffic safety problem is an identifiable subgroup of drivers, pedestrians, vehicles, or roadways that is statistically higher in collision experience than normal expectations. Problem identification involves the study of relationships between collisions and the population, licensed drivers, registered vehicles, vehicle miles traveled, and characteristics of specific subgroups that may contribute to collisions.

This document is divided into two major sections: a statewide collision summary and a breakdown of collisions by identified problem areas. Maps displaying the approximate location of each fatal collision by transportation district are found in Appendix A. Precise locations of fatal collisions cannot be determined from the maps. Information regarding collisions on the State Highway System is available in Appendix B. A five-year fatal and injury collision history is contained in three tables in Appendix C.

Idaho Traffic Collisions 2002 is organized to reflect the adoption of focus areas by the Idaho Traffic Safety Commission for the Highway Safety Grant Programs. The focus areas include: Impaired Driving, Safety Restraint Usage, Youthful Drivers, Aggressive Driving, Emergency Medical Services, Pedestrians, and Bicyclists.

Explanation of Data

The source for collision information is the Idaho Transportation Department State Collision Database. The database consists of collision reports completed by all law enforcement agencies in Idaho. All law enforcement agencies use a standard collision report, as designated in Idaho Code 49-1307. The resulting numbers are conservative since the database consists of only collisions investigated by law enforcement officers. For purposes of this report, only collisions resulting in injury or death of any person, or damage to the property of any one person in excess of $\$ 750$ were included. Collisions occurring on private property are excluded.

When examining any of the statistics herein, it is important to distinguish between the three different levels of collision data. The collision level, the vehicle level and the person level make up the three different levels. Each collision must involve at least one motor vehicle and each vehicle contains any number of people, including zero. Each collision is classified by the most severe injury that resulted from the collision. Therefore, each fatal collision resulted in at least one fatality but may have also produced any number and combination of additional fatalities and injuries.

The Division of Motor Vehicles and the Economics and Research Section (Idaho Transportation Department) provide information on licensed drivers, registered motor vehicles, license suspensions and convictions. The Traffic Survey Section (Idaho Transportation Department) provides the annual vehicle miles of travel. The Bureau of Criminal Identification (Idaho State Police) provides information regarding DUI arrests. Other sources of information that support this document are referenced.

Current year data is compared to data from the prior year to identify simple percentage changes either upward or downward. The average change over the prior three years is given to provide an additional perspective.

If you have any questions or suggestions concerning Idaho Traffic Collisions 2002, contact the Office of Highway Safety. Contact information is available on the title page at the front of this document.

SECTION I GENERAL COLLISION INFORMATION

Collision Categories

Table 1 compares major collision categories and measures of exposure for 1999 through 2002. The total number of traffic collisions in 2002 increased by 1.5% from 2001, while fatal collisions increased 2.2%. Total fatalities increased 1.9% from the previous year, while the number of injuries went up by 5.3%. The number of property damage collisions declined by 0.5%.

Table 1 Idaho Traffic Collision Data and Measures of Exposure: 1999-2002						
	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	Avg. Change 1999-2001
Total Collisions	25,076	26,241	26,090	26,477	1.5\%	2.0\%
Fatal Collisions	245	241	225	230	2.2\%	-4.1\%
Persons Killed (Fatalities)	278	276	259	264	1.9\%	-3.4\%
Injury Collisions	9,256	9,392	9,231	9,688	5.0\%	-0.1\%
Persons Injured	14,069	14,276	14,021	14,762	5.3\%	-0.2\%
Property-Damage-Only Collisions (Severity > >750)	15,575	16,608	16,634	16,559	-0.5\%	3.4\%
Idaho Population (thousands)	1,252	1,294	1,321	1,341	1.5\%	2.7\%
Licensed Drivers (thousands)	881	893	901	911	1.1\%	1.1\%
Vehicle M iles of Travel (millions)	14,328	13,728	14,299	14,303	0.0\%	0.0\%
Registered Vehicles (thousands)	1,316	1,340	1,247	1,331	6.7\%	-2.6\%

Changes in the number of collisions can often be correlated with changes in state population, the number of drivers, number of registered vehicles, and the statewide Annual Vehicle Miles of Travel (AVMT). In 2002, the number of licensed drivers increased by 1.1%, the population grew by 1.5%, and the number of registered motor vehicles increased by 6.7%.

The statewide AVMT increased by 1.5% in 2002. Commercial vehicles accounted for 18% of the statewide AVMT in 2002.

Fatality and Injury Rates

Table 2 shows the fatality and injury rates for 1999-2002.
$\left.\begin{array}{|lccccccc|}\hline & \text { Tatality and Injury Rates per 100 Million AVMT 1999-2002 }\end{array}\right]$

Figures 1 and 2 illustrate fatality and injury rates per 100 million AVMT for the U.S. and Idaho. The 2002 U.S. fatality rate and U.S. injury rate estimates are preliminary and may change.

Figure 1
Traffic Fatality Rates per 100 Million Annual Vehicle Miles of Travel For Idaho and The U.S.: 1993-2002

Figure 2
Traffic Injury Rates per 100 Million Annual Vehicle Miles of Travel: 1993-2002

Fatality and injury rates have varied over the past decade. Factors such as vehicle safety features, limited access highways, engineering improvements, occupant restraint usage, demographic changes and reduction in driving under the influence tend to reduce fatalities and injuries. Increases in AVMT, licensed drivers, registered vehicles, changes in reporting, and higher average speeds tend to increase the number of fatalities and injuries. The jump in the injury rate in 1994 corresponds with better identification of injuries after statewide training for law enforcement officers with the introduction of a new collision report form in 1994.

Injury Severity

Table 3 presents the injury severity distribution among persons involved in collisions from 1999 through 2002. The number of fatalities increased to 264 in 2002.

Table 3 Injury S everity of Persons Involved in Collisions: 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Fatalities	278	276	259	264	1.9\%	-3.4\%
Serious Injuries	1,824	1,733	1,615	1,750	8.4\%	-5.9\%
Visible Injuries	5,285	5,390	5,258	5,347	1.7\%	-0.2\%
Possible Injuries	6,960	7,153	7,148	7,665	7.2\%	1.4\%
No Injuries	51,316	52,482	52,013	52,995	1.9\%	0.7\%
Unknown / M issing	426	1,238	1,157	1,156	-0.1\%	92.0\%
Total Persons in Collisions	66,089	68,272	67,450	69,177	2.6\%	1.0\%

Economic Cost of Collisions

Table 4 gives estimated economic costs for Idaho motor vehicle collisions in 2002. Estimates in this table are based on 1994 Federal Highway Administration (FHWA) cost estimates for collisions. ${ }^{1}$ The cost estimates are updated to 2002 dollars using the Gross Domestic Product Implicit Price Deflator Ratio. The components of the cost estimates include productivity losses, property damage, medical costs, rehabilitation costs, travel delay, legal and court costs, emergency service costs, insurance administration costs, premature funeral costs and costs to employers. The estimated cost of Idaho collisions in 2002 was just over $\$ 1.6$ billion. The total cost of collisions in 2002 was $\$ 31.8$ million dollars more than the estimated cost of collisions in 2001.

Table 4 Economic Cost of Idaho Collisions: 2002 Estimates			
Incident Description	Total Occurrences	Cost Per Occurrence	Cost Per Category
Fatalities	264	\$3,061,799	\$808,315,006
Serious Injuries	1,750	\$211,971	\$370,948,757
Visible Injuries	5,347	\$42,394	\$226,681,486
Possible Injuries	7,665	\$22,375	\$171,501,975
Property Damage Only	16,559	\$2,355	\$39,000,257
Total Estimate of Economic Cost			\$1,616,447,481

In addition to the FHWA's study, the National Highway Traffic Safety Administration (NHTSA) also did a study on the costs of collisions. The NHTSA study not only concentrated on the costs of collisions but also who pays the costs. Table 5 is a combination of Table 22 and Table 23 from the NHTSA study, "The Economic Impact of Motor Vehicle Crashes, 2000" and shows the source of payment distribution of collision costs for each component of the costs. The total percentage for each source of payment is also included at the bottom.

Table 5							
	Federal	S tate	Total Government	Insurer	Other	Self	Total
Medical	14.40\%	9.76\%	24.16\%	54.85\%	6.36\%	14.62\%	100.00\%
Emergency Service	3.87\%	75.75\%	79.62\%	14.74\%	1.71\%	3.93\%	100.00\%
M arket Productivity	16.20\%	3.06\%	19.26\%	41.09\%	1.55\%	38.10\%	100.00\%
Household Productivity	0.00\%	0.00\%	0.00\%	41.09\%	1.55\%	57.36\%	100.00\%
Insurance Administration	0.89\%	0.51\%	1.40\%	98.60\%	0.00\%	0.00\%	100.00\%
Workp lace Costs	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	100.00\%
Legal / Court	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	100.00\%
Travel Delay	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	100.00\%
Property Damage	0.00\%	0.00\%	0.00\%	65.00\%	0.00\%	35.00\%	100.00\%
Percentage of Total Costs	6.41\%	2.70\%	9.11\%	50.26\%	14.48\%	26.15\%	100.00\%

The most significant point from the above table is that society at large picks up nearly 75% of all crash costs incurred by individual motor vehicle crash victims. These costs are passed on to the general public through insurance premiums, taxes, direct out-of-pocket payments for goods and services and increased charges for medical care. ${ }^{2}$

Collisions by Number of Units Involved

While collisions involving a single vehicle occur less frequently than collisions involving multiple vehicles, the resulting injuries are often more severe. Single vehicle collisions were nearly twice as likely to result in a fatality as multiple vehicle collisions were. Table 6 shows the number of collisions and injuries for single and multiple vehicle collisions by the severity of the collision and injury. Multiple vehicle collisions include collisions between a motor vehicle and a pedestrian or bicyclist.

Type of Collision	Table 6 Collisions and Injuries by Number of Vehicles Involved: 2002			
	Single Vehicle		Multiple Vehicles	
	Collisions	Injuries	Collisions	Injuries
Fatal	106	114	124	150
Serious Injury	549	684	786	1,066
Visible Injury	1,367	1,852	2,334	3,495
Possible Injury	1,183	1,752	3,469	5,913
Property Damage	4,985		11,574	
Total	8,190	4,402	18,287	10,624

In 2002, single-vehicle collisions represented only 31% of all collisions, yet accounted for 46% of all fatal collisions. Of the 106 fatal single-vehicle collisions, 96 (or 91\%) occurred on rural roadways.

Of the 124 multiple-vehicle fatal collisions, 15 involved a pedestrian, 3 involved a bicyclist, and 1 involved a train. Only 46% of all fatal collisions involved two or more motor vehicles. Of the 124 fatal multiple-vehicle collisions, 87 (or 70%) occurred on rural roadways.

Figures 2 and 3, on the following page, show the most prevalent contributing circumstances for single- and multiple-vehicle collisions. The "all other contributing circumstances" category combines the remaining contributing circumstances, i.e., contributing circumstances with percentages less than 2%. Contributing circumstances of none, not applicable and unknown were excluded from the total.

Speed played the biggest role in single-vehicle collision, contributing to more than 1 out of every 3 collisions. Speed also contributed to 7\% of all multiple-vehicle collisions.

Inattention/distraction was the most prevalent contributing circumstance for multiple vehicle collisions and the second most prevalent for single-vehicle collisions. Inattention/distraction contributed to 1 out of every 4 collisions involving two or more vehicles and almost 1 out of every 5 collisions involving a single vehicle.

Figure 3
Single-Vehicle Collisions - Contributing Circumstances: 2002

Figure 4
Multiple-Vehicle Collisions - Contributing Circumstances: 2002

Table 7 shows the most harmful events for fatal single- and multiple-vehicle collisions.

Table 7 Most Harmful Event for Fatal Single and Fatal Multiple Vehicle Collisions: 2002	
Single-Vehicle Collisions	Multiple-Vehicle Collisions
Overturn (69.8\%)	Head On (24.8\%)
Tree (8.5\%)	Angle (23.3\%)
Immersion (5.7\%)	Pedestrian (11.1\%)
Utility Pole (5.7\%)	Side Swiped Opposite (10.4\%)
Embankment (3.8\%)	Overturn (5.2\%)
Other Object - Fixed (1.9\%)	Rear End (5.2\%)
Building Wall (0.9\%)	Angle - Turning (3.7\%)
Culvert (0.9\%)	Head On - Turning (3.0\%)
Ditch (0.9\%)	Other (2.2\%)
Fence (0.9\%)	Bicy clist (2.2\%)
Overhead Sign Supp ort (0.9\%)	Side Swiped - Same Direction (2.2\%)
	Parked Vehicle (1.5\%)
	Same Direction - Turning (1.5\%)
	Rear End - Turning (0.7\%)
	Train (0.7\%)
	Ditch (0.4\%)
	Other Object - Fixed (0.4\%)
	Other Object - Not Fixed (0.4\%)
	Separation of Units (0.4\%)
	Tree (0.4\%)
	Unknown (0.4\%)
*The percentages represent the number of vehicles the most harmful event was attributed to. Multiple vehicles involved in a single collision may not have the same most harmful event. In 2002, there were 270 units involved in the 124 fatal multiple vehicle collisions.	

Overturn was the leading most harmful event for fatal single-vehicle collisions. Single-vehicle rollovers accounted for 73% of the single vehicle fatalities and 34% of all fatalities in 2002.

Of the 83 people killed in single-vehicle rollovers, 19 (or 23\%) were wearing seat belts. Of the 64 people who were killed in single-vehicle rollovers and not wearing a seat belt, 55 (or 86%) were totally or partially ejected from their vehicle.

There were 5 people killed in crashes where immersion was listed as the most harmful event. A vehicle is considered immersed if it comes to rest in water where the water level is high enough to enter the engine or passenger compartments. Of the 5 people killed in these crashes, none were wearing seatbelts. None of the occupants in immersion crashes that were wearing seatbelts were killed or seriously injured.

Collisions and Injuries by Month

Table 8 shows the number of collisions and injuries by each month and severity.

	Table 8 Severity of Collisions and Type of Injury by Month: 2002						
	Collisions			Injuries			Possible
	Fatal	Injury	Total	Fatal	Serious	Visible	
January	11	811	2,672	13	134	448	647
February	15	581	1,877	17	82	318	482
M arch	24	719	2,134	25	128	442	563
April	18	742	1,844	21	116	370	605
May	16	807	2,040	19	138	423	651
June	27	831	2,170	28	180	488	615
July	28	893	2,182	37	192	560	706
August	21	922	2,223	25	186	519	698
September	26	825	2,107	27	159	477	597
October	18	954	2,566	21	171	498	751
November	9	788	2,158	9	131	388	659
December	17	815	2,504	22	133	416	691
Totals	230	9,688	26,477	264	1,750	5,347	7,665

In 2002, July had the highest number of fatal collisions. January, October and December had the highest number of total collisions. Collisions occurring in the winter months are more likely to be attributed to severe weather such as ice and snow; however, these collisions tend to be less severe as people generally slow down and are more cautious when driving in adverse weather conditions.

Collisions by Day of the Week

Figures 5 and 6 show the number of fatal and total collisions by day of the week.

Figure 5
Fatal Collisions by Day of the Week: 2002

Figure 6
Total Collisions by Day of the Week: 2002

Collisions by Time of Day

Figures 7 and 8 show the number of fatal and total collisions by the time of day.

Figure 7
Fatal Collisions by Time of Day: 2002

Figure 8
Total Collisions by Time of Day: 2002

Collisions by Roadway Classification

Table 9 compares the number of fatal, injury, and total collisions by urban and rural classification. Urban roadways are defined as those within the city limits of cities with 5,000 people or more. Urban roadways tend to carry higher volumes of traffic at lower speeds, while rural roads carry lower traffic volumes at higher speeds.

	Comparison of Collisions by Roadway Classification: 1999-2002					
	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	Change $\mathbf{2 0 0 1 - 2 0 0 2}$	Avg. Change $\mathbf{1 9 9 9 - 2 0 0 1}$
Fatal Collisions	245	241	225	230	2.2%	-4.1%
Urban	36	39	40	47	17.5%	5.4%
Rural	209	202	185	183	-1.1%	-5.9%
Injury Collisions:	9,256	9,392	9,231	9,688	5.0%	-0.1%
Urban	5,129	5,356	5,329	5,577	4.7%	2.0%
Rural	4,127	4,036	3,902	4,111	5.4%	-2.8%
Total Collisions:	25,076	26,241	26,090	26,477	1.5%	2.0%
Urban	14,503	15,463	15,752	15,676	-0.5%	4.2%
Rural	10,573	10,778	10,338	10,801	4.5%	-1.1%

In 2002, 80% of fatal collisions occurred on rural roads, whereas 41% of all collisions occurred on rural roads. In Idaho, 91% of the total road mileage is classified as rural roadway. Rural roads tend to have higher speed limits. Crashes at higher impact speeds have a greater probability of resulting in a fatality. ${ }^{3}$

The high percentage of rural roadways in Idaho may account for the fact that Idaho's fatality rate is consistently higher than the U.S. fatality rate.

Table 10 shows the number of collisions and collision rates on local and state system roadways (both interstate and non-interstate) for 1999-2002, and the number of collisions statewide. Collision rates are lower than the statewide fatality and injury rates shown in Table 2 because multiple fatalities or injuries may occur in a single collision.

Roadway Information	Table 10					Avg. Change 1999-2001
	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	
Local:						
VM T (100 millions)	68.2	61.7	65.9	63.7	-3.3\%	-1.4\%
Fatal Collisions	87	109	84	88	4.8\%	1.2\%
Injury Collisions	5,211	5,357	5,216	5,424	4.0\%	0.1\%
Total Collisions	14,714	15,740	15,343	15,461	0.8\%	2.2\%
Fatal Collision Rate	1.3	1.8	1.3	1.4	8.3\%	5.3\%
Injury Collision Rate	76.4	86.8	79.2	85.1	7.5\%	2.4\%
Total Collision Rate	215.7	255.1	232.9	242.6	4.2\%	4.8\%
State System (Non-Interstate):						
VM T (100 millions)	41.0	44.3	45.1	46.2	2.4\%	4.9\%
Fatal Collisions	114	85	98	108	10.2\%	-5.1\%
Injury Collisions	2,639	2,642	3,014	3,329	10.5\%	7.1\%
Total Collisions	6,897	6,775	8,067	8,477	5.1\%	8.7\%
Fatal Collision Rate	2.8	1.9	2.2	2.3	7.6\%	-8.9\%
Injury Collision Rate	64.4	59.7	66.9	72.1	7.9\%	2.3\%
Total Collision Rate	168.3	153.1	178.9	183.6	2.6\%	3.9\%
Interstate:						
VM T (100 millions)	34.1	31.3	32.0	33.1	3.5\%	-2.9\%
Fatal Collisions	44	47	43	34	-20.9\%	-0.8\%
Injury Collisions	1,406	1,393	1,001	935	-6.6\%	-14.5\%
Total Collisions	3,465	3,726	2,680	2,539	-5.3\%	-10.3\%
Fatal Collision Rate	1.3	1.5	1.3	1.0	-23.6\%	2.9\%
Injury Collision Rate	41.3	44.5	31.3	28.2	-9.7\%	-11.0\%
Total Collision Rate	101.7	118.9	83.7	76.6	-8.5\%	-6.3\%
Statewide Totals:						
VM T (100 millions)	143.3	137.3	143.0	143.0	0.0\%	0.0\%
Fatal Collisions	245	241	225	230	2.2\%	-4.1\%
Injury Collisions	$9,256$	9,392	$9,231$	$9,688$	5.0\%	-0.1\%
Total Collisions	$25,076$	26,241	26,090	26,477	1.5\%	2.0\%
Fatal Collision Rate	1.7	1.8	1.6	1.6	2.2\%	-3.8\%
Injury Collision Rate	64.6	68.4	64.6	67.7	4.9\%	0.1\%
Total Collision Rate	175.0	191.1	182.5	185.1	1.5\%	2.3\%

County	Table 11 Collision History of Idaho Counties: 2000-2002 Fatal Collisions Injury Collisions						Total Collisions		
	2000	2001	2002	2000	2001	2002	2000	2001	2002
Ada	14	16	20	2,430	2,372	2,354	6,468	6,416	6,218
Adams	1	0	1	23	19	37	81	69	104
Bannock	6	10	9	484	472	501	1,565	1,570	1,627
Bear Lake	1	3	1	45	32	41	116	74	95
Benewah	3	3	8	73	58	50	221	200	201
Bingham	5	8	13	292	248	270	735	711	769
Blaine	2	4	2	75	64	79	242	243	286
Boise	3	5	3	72	92	114	185	204	226
Bonner	14	6	9	203	213	218	628	670	685
Bonneville	20	16	18	706	653	711	1,993	2,056	2,024
Boundary	2	2	3	53	60	53	161	182	162
Butte	2	2	0	14	19	14	31	62	33
Camas	1	0	0	12	12	7	21	22	18
Cany on	20	15	18	1,007	1,002	1,076	2,639	2,732	2,672
Caribou	1	2	0	43	41	49	129	114	124
Cassia	10	9	8	202	186	206	633	589	637
Clark	1	1	1	26	20	18	82	79	67
Clearwater	4	2	1	35	48	44	138	155	167
Custer	1	3	0	27	40	26	54	81	54
Elmore	12	15	7	217	220	215	482	484	474
Franklin	1	1	3	57	76	73	176	220	200
Fremont	4	3	9	81	68	88	243	232	253
Gem	4	3	0	61	66	65	154	167	151
Gooding	13	9	4	87	100	81	300	282	237
Idaho	6	2	5	139	135	130	339	291	351
Jefferson	3	4	7	112	91	90	299	293	306
Jerome	6	3	15	163	199	209	467	538	547
Kootenai	21	13	14	780	832	892	2,210	2,241	2,306
Latah	5	2	5	192	157	202	620	569	629
Lemhi	0	3	5	43	42	53	92	90	114
Lewis	1	2	3	37	24	18	93	98	81
Lincoln	0	3	4	19	22	36	60	69	91
M adison	3	1	2	157	103	142	468	419	480
M inidoka	5	13	3	151	127	126	367	330	333
Nez Perce	7	5	4	280	278	284	819	792	795
Oneida	1	3	1	51	58	39	143	151	119
Owy hee	2	2	3	44	41	46	117	124	146
Pay ette	4	4	1	132	112	119	324	316	309
Power	7	3	7	69	57	75	241	176	212
Shoshone	4	4	4	83	99	108	291	276	320
Teton	2	2	1	36	56	43	118	118	147
Twin Falls	12	11	7	487	501	528	1,374	1,287	1,302
Valley	5	3	0	65	80	95	224	197	243
Washington	2	4	1	27	36	63	98	101	162
TOTALS	241	225	230	9,392	9,231	$\mathbf{9 , 6 8 8}$	26,241	26,090	26,477

Table 12 shows fatal, injury and total collisions for Idaho cities with populations over 2,000 for 1999-2002. Cities are grouped by population size. Population figures are from the 2000 U. S. Census for cities. Population estimates for 2002 were not available at the time of publication.

City by Population Size	Table 12 Collision History of Idaho Cities: 2000-2002								
	2000	2001	2002	2000	2001	2002	2000	2001	2002
40,000 and over									
Boise	7	9	8	1,662	1,586	1,604	4,439	4,348	4,240
Idaho Falls	4	1	2	438	430	444	1,305	1,403	1,318
Nampa	3	1	6	458	460	510	1,266	1,269	1,276
Pocatello	1	4	3	320	281	327	1,114	1,058	1,147
15,000-39,999									
Caldwell	0	2	2	171	185	220	540	568	599
Coeur d'Alene	1	4	1	307	379	367	927	1,006	914
Lewiston	1	2	2	207	195	216	623	594	604
M eridian	2	1	2	239	242	269	660	742	778
M oscow	0	0	0	80	65	97	314	299	364
Post Falls	2	1	3	84	90	108	254	268	298
Rexburg	0	0	0	79	58	61	302	277	291
Twin Falls	2	1	1	313	312	328	877	811	775
5,000-14,999									
Ammon	1	0	0	17	20	26	48	74	75
Blackfoot	1	2	0	70	56	69	207	199	251
Burley	1	0	0	78	73	73	309	250	277
Chubbuck	0	0	0	38	43	46	131	132	127
Eagle	0	0	2	57	59	71	125	164	179
Emmett	0	0	0	17	25	20	52	61	57
Garden City	0	2	0	92	94	100	268	307	316
Hailey	0	0	0	11	9	24	61	56	98
Hay den	0	0	0	45	40	56	115	90	121
Jerome	0	0	0	35	41	47	96	135	145
Kuna	0	0	0	9	18	10	32	40	47
Mountain Home	0	0	0	27	39	35	95	125	112
Payette	0	0	1	24	17	22	48	68	73
Rupert	0	0	0	15	7	23	65	35	64
Sandpoint	0	0	1	45	36	36	171	176	180
Weiser	0	0	0	2	3	17	16	14	48
2,000-4,999									
American Falls	0	0	0	7	7	13	45	41	38
Bonners Ferry	0	1	0	18	14	12	41	42	33
Buhl	0	0	0	7	10	6	41	46	42
Dalton Gardens	0	0	0	7	5	12	25	19	29
Fruitland	1	1	0	23	18	15	54	42	46
Gooding	0	1	0	10	5	6	45	24	19
Grangeville	0	1	0	6	14	13	24	32	24
Hey burn	0	1	0	14	2	8	34	10	22
Homedale	1	0	0	6	2	2	10	15	16
Kellogg	0	0	0	4	7	8	38	25	30
Ketchum	0	1	0	10	5	14	74	55	85
Kimberly	0	0	0	4	7	2	13	17	9

City by Population Size	Table 12 (Continued) Collision History of Idaho Cities: 2000-2002								
	Fatal Collisions			Injury Collisions			Total Collisions		
	2000	2001	2002	2000	2001	2002	2000	2001	2002
2,000-4,999 (Cont.)									
M alad	0	1	0	8	4	6	24	22	31
McCall	0	0	0	7	4	11	39	28	41
Middleton	0	0	0	5	7	8	19	24	22
M ontpelier	1	0	0	10	10	9	30	26	24
Orofino	0	1	0	5	7	9	28	46	42
Preston	0	0	0	13	17	19	60	55	64
Rathdrum	0	0	0	12	11	21	34	28	51
Rigby	0	0	0	14	17	11	49	66	48
St. Anthony	1	1	0	13	6	5	42	34	24
St. M aries	0	0	0	8	4	3	44	28	30
Salmon	0	0	1	20	12	12	43	29	33
Shelley	0	0	0	7	8	6	18	30	28
Soda Springs	0	0	0	6	6	11	40	27	32
Wendell	0	0	1	2	6	5	21	26	28

Table 13 lists fatal and injury collision data and collision rates for the 44 counties in Idaho. Population figures are based on 2002 U. S. Census estimates for counties.

Table 13 Fatal and Injury Collision Rates by County - 2002							
	Population	Number of Collisions			Number of Persons		Collision Rate Per
	(in 1,000s)	Total	Fatal	Injury	Killed	Injured	1,000 Population
50,000 and over							
Ada	319.7	6,218	20	2,354	22	3,412	7.4
Bannock	75.8	1,627	9	501	12	721	6.7
Bonneville	85.2	2,024	18	711	19	1,123	8.6
Canyon	145.0	2,672	18	1,076	20	1,640	7.5
Kootenai	114.0	2,306	14	892	16	1,336	8.0
Twin Falls	65.5	1,302	7	528	7	769	8.2
Mean Collision Rate							7.6
20,000-49,999							
Bingham	42.5	769	13	270	18	471	6.7
Blaine	20.4	286	2	79	3	122	4.0
Bonner	38.2	685	9	218	9	341	5.9
Cassia	21.7	637	8	206	11	330	9.9
Elmore	29.5	474	7	215	7	328	7.5
Latah	35.2	629	5	202	7	304	5.9
M adison	27.7	480	2	142	2	219	5.2
Nez Perce	37.1	795	4	284	6	411	7.8
Payette	21.0	309	1	119	1	196	5.7
Mean Collision Rate							6.5

Table 13 (Continued) Fatal and Injury Collision Rates by County - 2002							
	Population	Number of Collisions			Number of Persons		Collision Rate Per
	(in 1,000s)	Total	Fatal	Injury	Killed	Injured	1,000 Population
10,000-19,999							
Boundary	10.1	162	3	53	4	71	5.6
Franklin	11.7	200	3	73	3	120	6.5
Fremont	11.9	253	9	88	10	159	8.2
Gem	15.5	151	0	65	0	99	4.2
Gooding	14.3	237	4	81	5	125	5.9
Idaho	15.3	351	5	130	5	206	8.8
Jefferson	19.8	306	7	90	7	130	4.9
Jerome	18.7	547	15	209	19	336	12.0
M inidoka	19.5	333	3	126	5	222	6.6
Owy hee	10.9	146	3	46	3	74	4.5
Shoshone	13.1	320	4	108	4	174	8.6
Mean Collision Rate							7.0
5,000-9,999							
Bear Lake	6.4	95	1	41	1	72	6.6
Benewah	9.0	201	8	50	8	89	6.4
Boise	7.1	226	3	114	3	174	16.6
Caribou	7.3	124	0	49	0	95	6.7
Clearwater	8.4	167	1	44	1	70	5.3
Lemhi	7.6	114	5	53	5	81	7.6
Power	7.4	212	7	75	8	109	11.1
Teton	6.9	147	1	43	1	73	6.4
Valley	7.5	243	0	95	0	139	12.6
Washington	9.9	162	1	63	1	102	6.4
Mean Collision Rate							8.4
0-4,999							
Adams	3.4	104	1	37	2	55	11.0
Butte	2.9	33	0	14	0	19	4.8
Camas	1.0	18	0	7	0	12	6.8
Clark	1.0	67	1	18	1	31	19.1
Custer	4.2	54	0	26	0	46	6.2
Lewis	3.7	81	3	18	3	32	5.6
Lincoln	4.2	91	4	36	4	54	9.5
Oneida	4.1	119	1	39	1	70	9.7
Mean Collision Rate							8.3
Statewide Totals	1,341.1	26,477	230	9,688	264	14,762	7.4

Table 14 lists fatal and injury collision data and rates for Idaho cities with populations over 2,000. Population figures are from the 2000 U. S. Census for cities. Population estimates for 2002 were not available at the time of publication.

Table 14 (Continued) Fatal and Injury Collision Rate by City - 2002							
	Population	Num	r of Co		Numbe	Persons	Collision Rate Per
	(in 1,000s)	Total	Fatal	Injury	Killed	Injured	1,000 Population
2,000-4,999							
American Falls	4.1	38	0	13	0	14	3.2
Bonners Ferry	2.5	33	0	12	0	16	4.8
Buhl	4.0	42	0	6	0	8	1.5
Dalton Gardens	2.3	29	0	12	0	17	5.3
Fruitland	3.8	46	0	15	0	24	3.9
Gooding	3.4	19	0	6	0	9	1.8
Grangeville	3.2	24	0	13	0	19	4.0
Hey burn	2.9	22	0	8	0	14	2.8
Homedale	2.5	16	0	2	0	2	0.8
Kellogg	2.4	30	0	8	0	12	3.3
Ketchum	3.0	85	0	14	0	17	4.7
Kimberly	2.6	9	0	2	0	2	0.8
M alad	2.2	31	0	6	0	6	2.8
McCall	2.1	41	0	11	0	16	5.3
M iddleton	3.0	22	0	8	0	10	2.7
M ontpelier	2.8	24	0	9	0	18	3.2
Orofino	3.2	42	0	9	0	14	2.8
Preston	4.7	64	0	19	0	26	4.1
Rathdrum	4.8	51	0	21	0	30	4.4
Rigby	3.0	48	0	11	0	15	3.7
St. Anthony	3.3	24	0	5	0	7	1.5
St. M aries	2.7	30	0	3	0	4	1.1
Salmon	3.1	33	1	12	1	12	4.2
Shelley	3.8	28	0	6	0	8	1.6
Soda Springs	3.4	32	0	11	0	16	3.3
Wendell	2.3	28	1	5	1	8	2.6
Mean Collision Rate							3.1

Driver Age Distribution

Table 15 shows the increase in the number of drivers in Idaho since 1990. These numbers reflect growth in the population of the state and the aging of the baby boomers. Since 1990, there has been a large increase in the number and proportion of drivers over the age of 45 .

Table 15 Age Distribution of Licensed Drivers: 1990, 2000, 2002					
Age	1990	2000	2002	$\begin{aligned} & \text { Change } \\ & \text { 1990-2002 } \end{aligned}$	$\begin{gathered} \text { Change } \\ \text { 2000-2002 } \end{gathered}$
15*	3,478	9,406	4,223	21.4\%	-55.1\%
(\%)	0.5\%	1.1\%	0.5\%		
16-24	123,114	156,485	150,554	22.3\%	-3.8\%
(\%)	17.4\%	17.5\%	16.5\%		
25-34	151,625	154,133	158,555	4.6\%	2.9\%
(\%)	21.4\%	17.3\%	17.4\%		
35-44	153,976	178,401	173,847	12.9\%	-2.6\%
(\%)	21.8\%	20.0\%	19.1\%		
45-54	100,258	167,821	175,943	75.5\%	4.8\%
(\%)	14.2\%	18.8\%	19.3\%		
55-64	76,255	106,190	119,672	56.9\%	12.7\%
(\%)	10.8\%	11.9\%	13.1\%		
65+	98,967	120,516	128,458	29.8\%	6.6\%
(\%)	14.0\%	13.5\%	14.1\%		
TOTALS	707,673	892,952	911,252	28.8\%	2.0\%

The graduated driver's license law took effect January 1, 2001. The law changed the requirements for operating a vehicle with a supervised instruction permit. These requirements must be met to obtain a class D driver's license: the permittee may not apply for a driver's license sooner than 15 years of age and no sooner than 4 months after completing a driver's training course; during the 4 month period, the permittee must accumulate 50 hours of supervised driving time with a licensed driver 21 years of age or older and 10 of the hours must be at night. All occupants of the vehicle must be properly restrained. If the permittee is convicted of any traffic violation or is found in violation of any of the restrictions of the supervised instruction permit, the permit is canceled and the 4 month period starts over from the date a supervised driving permit is reissued. The conditions of the supervised driving permit apply to everyone under 17 years of age that is attempting to obtain a driver's license. Once a class D license is obtained, driving is restricted to daylight hours for persons under 16 years of age. An amendment, taking effect July 1,2003, allows 15 year old drivers to drive at night, as long as another licensed driver over the age of 21 is present.

Age	Table 16 Driver Age as a Factor in Collisions: 2002 Licensed Drivers Drivers in All Collisions					Drivers in Fatal and Injury Collisions		
	Number	\%	Number	\%	Involvement*	Number	\%	Involvement*
15	4,223	0.5\%	265	0.6\%	1.3	100	0.6\%	1.3
16	11,506	1.3\%	1,260	2.8\%	2.2	427	2.5\%	2.0
17	16,026	1.8\%	2,010	4.5\%	2.6	800	4.7\%	2.7
18	17,284	1.9\%	2,200	4.9\%	2.6	864	5.1\%	2.7
19	18,011	2.0\%	2,016	4.5\%	2.3	826	4.8\%	2.4
20	17,834	2.0\%	1,590	3.5\%	1.8	609	3.6\%	1.8
21	17,083	1.9\%	1,470	3.3\%	1.8	541	3.2\%	1.7
22	18,369	2.0\%	1,452	3.2\%	1.6	582	3.4\%	1.7
23	17,752	1.9\%	1,283	2.9\%	1.5	476	2.8\%	1.4
24	16,689	1.8\%	1,137	2.5\%	1.4	412	2.4\%	1.3
25-34	158,555	17.4\%	8,288	18.5\%	1.1	3,194	18.7\%	1.1
35-44	173,847	19.1\%	7,378	16.5\%	0.9	2,827	16.6\%	0.9
45-54	175,943	19.3\%	6,207	13.9\%	0.7	2,433	14.3\%	0.7
55-64	119,672	13.1\%	3,598	8.0\%	0.6	1,356	7.9\%	0.6
65-74	74,604	8.2\%	1,877	4.2\%	0.5	693	4.1\%	0.5
75+	53,854	5.9\%	1,605	3.6\%	0.6	631	3.7\%	0.6
Not Stated or Other			$1,165$	2.6%		290	1.7\%	
TOTALS	911,252		44,801			17,061		
* Involvement is calculated by dividing the percent of drivers in collisions by the percent of licensed drivers. Over-representation occurs when the value is greater than 1.0.								

Drivers, ages 19 and under, were 2.7 times as likely as all other drivers to be involved in fatal or injury traffic collisions. This age group comprised 7.4% of all licensed drivers and accounted for 17.3% of drivers in all collisions and 17.7% of drivers in fatal and injury collisions.

In 2002, the number of 15 year old drivers in collisions was 77% lower than in 2000 and the number of 15 year old licensed drivers remained 54% lower than 2000 numbers. The number of 16 year old drivers in collisions was 20% lower than in 2000 , while the number of 16 year old licensed drivers was 26% lower than 2000 numbers. These decreases are due, largely, to the graduated driver's license law (Idaho Code 49-307 section 5) that strengthened requirements necessary to obtain a driver's license for new drivers under 17 years of age.

Drivers, ages 20-24, were also over-represented in traffic collisions. This age group comprised 10% of all licensed drivers, yet accounted for 15.5% of all collision-involved drivers and 15.4% of drivers in fatal and injury collisions.

Drivers, ages 45 and older, were under-represented in traffic collisions. This age group comprised 46.5% of all licensed drivers, yet accounted for only 29.7% of all collision-involved drivers and 30.0% of drivers in fatal and injury collisions.

Driver Gender Information

Figure 9 shows the distribution of male and female licensed drivers, the percentage of drivers involved in all collisions, and the percentage of drivers involved in fatal collisions. Males comprise just over 50% of the licensed drivers, but accounted for 58% of the drivers in all collisions and 75% of the drivers in fatal collisions.

Figure 9
Comparison by Gender for Driver Licensure, and Collision Involvement: 2002

In 2002, males were 1.4 times more likely than females to be involved in any collision. Males were 3 times as likely as females to be involved in a fatal collision.

Figures 10 and 11 show driver involvement by age and gender for all collisions and fatal and injury collisions. Figure 11 corresponds with the involvement numbers in table 16 and shows how the involvement numbers breakdown by gender. For example (in Figure 10), 19 year-old male drivers were involved in just over 2.5 times as many collisions as expected, while female 19 year-old drivers were involved in 2.0 times as many collisions as expected.

Figure 10
Involvement by Driver Age and Gender in All Collisions: 2002

Figure 11
Involvement by Driver Age and Gender in Fatal \& Injury Collisions: 2002

Contributing Circumstances in Collisions

Figure 12 portrays the top seven most prevalent contributing circumstances recorded for fatal collisions, injury collisions, and all collisions. For every vehicle involved in a collision, the investigating officer may indicate up to three circumstances contributing to the cause of the collision.

Figure 12
Top Seven Primary Contributing Circumstances Cited for Traffic Collisions in 2002

Traffic Violations and Driver's License Suspensions

The top ten traffic violations for which drivers were cited in 2002 are presented in Table 17. The basic rule violations refer to Idaho Code that requires drivers to operate vehicles at a reasonable, prudent speed for the conditions and with consideration for actual and potential hazards.

Table 17 Top Ten Traffic Violations for Idaho Drivers: 2002		
Violation Type	Number	\% of Total
1. Basic Rule / Speeding Violations	86,077	48.2%
2. Safety Restraint Violations	28,975	16.2%
3. Insurance Violations	11,895	6.7%
4. Failure to Stop at Traffic Control Devices	11,621	6.5%
5. Driving Under the Influence	7,320	4.1%
6. Driving Without Privileges - Suspended License	4,968	2.8%
7. Following Too Close	4,327	2.4%
8. Reckless or Inattentive Driving	4,173	2.3%
9. Failure to Yield Right of Way	3,097	1.7%
10. Child Safety Seat Violations	1,895	1.1%
All Other	14,140	7.9%
TOTAL	$\mathbf{1 7 8 , 4 8 8}$	

Safety restraint violations are considered secondary violations. Both child safety seat and safety restraint violations are non-moving traffic infractions and are not part of the driving record. Data for these two violations is obtained directly from the judicial system. The remaining violations are moving traffic infractions and data is obtained from driving records.

Table 18 is a breakdown by age for selected traffic violations. The five violations shown comprise 64% of all violations for 2002. The basic rule violations refer to Idaho Code requiring drivers to operate vehicles at a reasonable, prudent speed for the conditions and with consideration for actual and potential hazards.

Age	Basic Rule/Speed	Table 18 affic Violation Rates for Idaho Licensed Drivers: 2002 (Per 100 Licensed Drivers)			Following Too Close
		Fail to S top at S top Sign and Signals	DUI Idaho Residents	Inattentive	
15	12.6	2.8	0.2	1.1	1.7
16-19	25.0	3.9	0.9	1.8	1.8
20-24	17.8	2.2	1.6	1.0	0.8
25-34	11.4	1.5	1.2	0.4	0.5
35-44	8.6	1.0	1.0	0.4	0.4
45-54	6.2	0.8	0.6	0.2	0.2
55-64	4.6	0.6	0.3	0.1	0.2
65-74	2.7	0.5	0.1	0.1	0.1
75+	1.5	0.7	0.0	0.1	0.2
M ean	9.2	1.3	0.8	0.4	0.5

Younger drivers, especially those 16 to 19 years old, had violation rates well above the mean in areas consistently shown to be major contributing factors in collisions, i.e., speeding, inattention, following too close, and disregarding stop signs and signals. Drivers age 20-24 had the highest rate for DUI violations.

This information is provided by the Drivers Services Section of the Division of Motor Vehicles within the Idaho Transportation Department and comes directly from driver's license records.

Table 19 presents drivers license suspensions in Idaho for 2002. The table also reviews how frequently restricted driving privileges are granted when a driver's license has been suspended.

Table 19 Driver's License Suspensions by Violation Type: 2002		
Violation	Number	\% of All Suspensions
Failure to Pay Fine	21,655	31.8\%
Failure to M aintain Insurance	16,474	24.2\%
Driving Under the Influence	7,263	10.7\%
Administrative License Suspension (ALS)*	6,390	9.4\%
Driving Without Privileges	5,592	8.2\%
Underage Consumption or Possession of Alcohol or Tobacco	3,155	4.6\%
Refused Evidentiary BAC Test	1,668	2.5\%
Recurrence of Violation	1,511	2.2\%
Family Responsibility Law	1,042	1.5\%
Points	592	0.9\%
Reckless Driving	561	0.8\%
All Others	2,163	3.2\%
TOTALS	68,066	100.0\%
*On July 1, 1994, legislation took effect creating the Administrative License Suspension (ALS) Program to suspend licenses of drivers who fail or refuse to submit to evidentiary testing for DUI. The ALS Program was placed in moratorium on March 17, 1995. The law was reinstated January 1, 1998.		

The two largest categories of suspensions are failure to pay a traffic fine and failure to maintain insurance. These two suspensions account for 56% of all license suspensions. Driving under the influence accounted for 11% of all license suspensions. Of the 68,066 license suspensions, 3% received some type of restricted driving privilege.

The ITD Economics and Research Section provide this information concerning driver's license suspensions. The Drivers Services Section provides the information on restricted driving privileges.

SECTION II Idaho Focus Areas

Impaired Driving

Table 20 gives details for impaired driving collisions from 1999 through 2002. The numbers of fatalities and injuries are also given, as one collision may result in multiple injuries or fatalities. An impaired driving collision is identified by information provided on the collision report. A law enforcement officer determines whether the driver was alcohol or drug impaired or whether alcohol or drugs contributed to the collision, regardless of whether a Blood Alcohol Content (BAC) test was given or not. Collisions where a sober driver collided with an impaired pedestrian or bicyclist are also included.

Table 20 Impaired Driving Collisions: 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ 2001-2002 \\ \hline \end{gathered}$	Avg. Change 1999-2001
Impaired Driving Collisions	1,676	1,790	1,655	1,886	14.0\%	-0.4\%
Fatalities	86	97	94	97	3.2\%	4.8\%
Serious Injuries	320	350	312	335	7.4\%	-0.7\%
Visible Injuries	695	731	663	715	7.8\%	-2.1\%
Possible Injuries	458	507	440	581	32.0\%	-1.3\%
Imp aired Driving Collisions as a \% of All Collisions	6.7\%	6.8\%	6.3\%	7.1\%	12.3\%	-2.5\%
Impaired Driving Fatalities as a \% of All Fatalities	30.9\%	35.1\%	36.3\%	36.7\%	1.2\%	8.4\%
Imp aired Driving Injuries as a \% of All Injuries	10.5\%	11.1\%	10.1\%	11.0\%	9.5\%	-1.5\%
All Fatal and Injury Collisions	9,501	9,633	9,456	9,918	4.9\%	-0.2\%
Impaired Fatal/Injury Collisions	987	1,050	964	1,125	16.7\%	-0.9\%
\% Impaired Driving	10.4\%	10.9\%	10.2\%	11.3\%	11.3\%	-0.8\%
Impaired Driving Fatality and Serious Injury Rate per 100 M illion Vehicle $\begin{array}{lllllll}\text { Miles Of Travel } & 2.83 & 3.26 & 2.84 & 3.02 & 6.4 \% & 1.1 \%\end{array}$						
Annual DUI Arrests by Agency*						
Idaho State Police	1,835	1,764	1,640	1,723	5.1\%	-5.4\%
Local Agencies	9,001	8,404	8,257	8,302	0.5\%	-4.2\%
Total Arrests	10,836	10,168	9,897	10,025	1.3\%	-4.4\%
DUI Enforcement Rate**	1.23	1.14	1.10	1.10	0.1\%	-5.5\%

*Source: Idaho State Police, Bureau of Criminal Identification
**DUI Arrests per 100 Licensed Drivers per Year.

Table 20 also compares impaired driving fatal and injury collisions to all fatal and injury collisions. In 2002, just over 11% of all fatal and injury collisions involved an impaired driver, impaired pedestrian, or impaired bicyclist. Nearly 37% of all fatalities were the result of an impaired driving collision.

In the early 1980s, impaired driving fatal and injury collisions represented over 20% of the fatal and injury collisions in Idaho, compared to 11% in 2002. Factors influencing the reduction include selective traffic enforcement programs, stiffer penalties for DUI violations, increased publicity about and concern over the impaired driving problem, and increasing the legal drinking age to 21 .

Table 20 also presents a four-year summary of annual DUI arrests by Idaho State Police (ISP) and local agencies. Local agency DUI arrests were up slightly in 2002 from the prior year, while ISP DUI arrests increased by 7%. Overall, DUI arrests were up by just over 1% from 2001 levels.

Economic Costs of Impaired Driving Collisions

Table 21 contains the estimated economic costs for impaired driving-related motor vehicle collisions in 2002. The estimated cost of Idaho impaired driving collisions in 2002 was $\$ 412.9$ million dollars. This estimate represents 25% of the total cost of Idaho collisions (as shown in Table 4).

	Table 21 Economic Costs of Impaired Driving Collisions: 2002 Estimates		
Incident Description	Total Occurrences	Cost Per Occurrence	Cost Per Category
Fatalities	97	$\$ 3,061,799$	$\$ 296,994,529$
Serious Injuries	335	$\$ 211,971$	$\$ 71,010,191$
Visible Injuries	715	$\$ 42,394$	$\$ 30,311,813$
Possible Injuries	581	$\$ 22,375$	$\$ 12,999,693$
Property Damage Only	691	$\$ 2,355$	$\$ 1,627,464$
Total Estimate of Economic Cost			$\mathbf{\$ 4 1 2 , 9 4 3 , 6 8 9}$

Victims of Fatal Collisions Involving Impaired Drivers

Table 22 shows a breakout of impaired driving fatalities. Of the 97 people killed in impaired driving collisions, 82 (or 85%) were impaired drivers, impaired pedestrians, impaired bicyclists, or passengers of a motor vehicle riding with an impaired driver.

Impaired S tatus*	Table 22 Persons Killed in Impaired Driving Collisions: 2002 by Vehicle Type, Seating Position and Impaired Status								
	Driver	Passenger	Unknown	Drive	sen	Bicyclists	Pedestr	ATV	Commercial Driver
Imp aired	50	18	2	3	0	1	5	2	1
Not Impaired	8	6	0	0	0	0	0	0	1

* For drivers, bicyclists and pedestrians, impaired status implies whether the person killed was impaired or not.

For passengers, it implies whether the passenger killed was riding with an impaired driver.

Impaired Driving by Age

Table 23 shows the number and percent of licensed drivers, DUI arrests, and impaired drivers in collisions by age. Drivers, ages 18 to 39 , are over-represented in impaired driving collisions. The most over-represented age group is the 21 to 24 year-old drivers. Drivers in this age group were involved in 2.3 times as many impaired driving collisions as would be expected. Involvement is calculated by dividing the percentage of drivers in collisions by the percentage of licensed drivers. Over-representation occurs when the number is greater than 1 .

Age	Table 23 D UI Arrests and Impaired Driving Collisions by Driver Age: 2002					
	Number	Percent	Number	Percent	Number	Percent
0 to 14	0	0.0\%	2	0.0\%	1	0.1\%
15	4,223	0.5\%	17	0.2\%	5	0.3\%
16	11,506	1.3\%	87	0.9\%	12	0.6\%
17	16,026	1.8\%	194	1.9\%	34	1.8\%
18	17,284	1.9\%			55	2.9\%
19	18,011	2.0\%	640*	6.7\%	87	4.7\%
20	17,834	2.0\%			66	3.5\%
21	17,083	1.9\%			84	4.5\%
22	18,369	2.0\%			104	5.6\%
23	17,752	1.9\%			77	4.1\%
24	16,689	1.8\%	2,083**	19.1\%	71	3.8\%
25-29	79,208	8.7\%	1,377	13.7\%	254	13.6\%
30-34	79,347	8.7\%	1,142	11.4\%	204	10.9\%
35-39	80,698	8.9\%	1,178	11.8\%	180	9.6\%
40-44	93,149	10.2\%	1,303	13.0\%	185	9.9\%
45-49	92,795	10.2\%	859	8.6\%	166	8.9\%
50-54	83,148	9.1\%	552	5.5\%	127	6.8\%
55-59	67,647	7.4\%	302	3.0\%	44	2.4\%
$60+$	180,483	19.8\%	289	2.9\%	68	3.6\%
M issing or Unknown				0.0\%	44	2.4\%
TOTALS	911,252		10,025		1,868	

[^0]
Impaired Driving by Counties and Cities

Table 24 presents information on impaired driving collisions for Idaho counties. Population numbers are based on 2002 U.S. Census estimates for counties.

Table 24 (Continued) Impaired Driving Collisions by County: 2002							
	Population (in 1,000s)	Number of Collisions			Number of Persons Killed Injured		Impaired Driving Fatal and Injury Collision Rate Per 1,000 Population
		Total	Fatal	Injury			
5,000-9,999							
Bear Lake	6.4	4	1	1	1	6	0.3
Benewah	9.0	27	4	13	4	25	1.9
Boise	7.1	21	0	15	0	23	2.1
Caribou	7.3	12	0	10	0	25	1.4
Clearwater	8.4	9	0	4	0	4	0.5
Lemhi	7.6	9	2	3	2	3	0.7
Power	7.4	20	3	10	3	18	1.8
Teton	6.9	7	0	5	0	11	0.7
Valley	7.5	18	0	13	0	18	1.7
Washington	9.9	14	1	10	1	23	1.1
Mean Collision Rate							1.2
0-4,999							
Adams	3.4	5	0	2	0	2	0.6
Butte	2.9	3	0	2	0	3	0.7
Camas	1.0	0	0	0	0	0	0.0
Clark	1.0	3	0	1	0	1	1.0
Custer	4.2	5	0	1	0	2	0.2
Lewis	3.7	9	1	3	1	6	1.1
Lincoln	4.2	10	2	6	2	8	1.9
Oneida	4.1	5	0	1	0	2	0.2
Mean Collision Rate							0.8
Statewide Totals	1,341.1	1,886	80	1,045	97	1,631	0.8

Table 25 presents information on impaired driving collisions for cities with populations exceeding 2,000 people. Population figures are based on the 2000 U.S. Census estimates for Cities. Population estimates for 2002 were not available at the time of publication.

Table 25 (Continued) Impaired Driving Collisions by City: 2002							
		Number of Collisions			Number of Persons		Impaired Driving Fatal and Injury Collision Rate Per 1,000 Population
		Total	Fatal	Injury	Killed	Injured	
2,000-4,999							
American Falls	4.1	4	0	1	0	1	0.2
Bonners Ferry	2.5	0	0	0	0	0	0.0
Buhl	4.0	2	0	0	0	0	0.0
Dalton Gardens	2.3	1	0	1	0	1	0.4
Fruitland	3.8	6	0	1	0	1	0.3
Gooding	3.4	0	0	0	0	0	0.0
Grangeville	3.2	4	0	3	0	4	0.9
Hey burn	2.9	3	0	0	0	0	0.0
Homedale	2.5	1	0	0	0	0	0.0
Kellogg	2.4	0	0	0	0	0	0.0
Ketchum	3.0	3	0	1	0	1	0.3
Kimberly	2.6	1	0	0	0	0	0.0
M alad	2.2	1	0	0	0	0	0.0
M cCall	2.1	2	0	1	0	1	0.5
M iddleton	3.0	1	0	1	0	1	0.3
M ontpelier	2.8	2	0	1	0	5	0.4
Orofino	3.2	2	0	0	0	0	0.0
Preston	4.7	1	0	0	0	0	0.0
Rathdrum	4.8	5	0	4	0	5	0.8
Rigby	3.0	0	0	0	0	0	0.0
St. Anthony	3.3	0	0	0	0	0	0.0
St. M aries	2.7	2	0	0	0	0	0.0
Salmon	3.1	3	1	0	1	0	0.3
Shelley	3.8	1	0	1	0	1	0.3
Soda Springs	3.4	1	0	0	0	0	0.0
Wendell	2.3	2	1	0	1	3	0.4
Mean Collision R							0.2

Safety Restraint Usage

Idaho's seat belt use law, effective July 1, 1986, requires seat belt use for front seat passengers and drivers, regardless of residency, in vehicles with a gross vehicle weight of 8,000 pounds or less that were manufactured with safety belts. The law is a "secondary" law and can only be enforced when someone is stopped for another traffic violation. Idaho's child restraint law is a primary enforcement law.

Figure 13 depicts observed shoulder harness use by year for both Idaho and the U.S. The figures are the observed rates for persons in passenger cars, pickups, sport utility vehicles, and vans, which make up 92% of the vehicles involved in motor vehicle crashes. The U.S. usage rate comes from the National Occupant Protection Use Survey (NOPUS) and the mini NOPUS, which are done alternately every year.

Figure 13
Observed Seat Belt Usage - Idaho vs. U.S.: 1993-2002

The methodology for the observational seat belt survey was changed in 1998 in accordance with the National Highway Traffic Safety Administration (NHTSA) guidelines. Comparisons of 1998 and future surveys to historical data (1986 - 1997 surveys) should be made with caution as the new methodology differs greatly from the previous methodology. Likewise, the methodology for the National survey differs from that of Idaho and does not included any observation sites in Idaho.

Observational Seat Belt Survey Results

Table 26 shows the observed shoulder harness seat belt use by county.
$\left.\begin{array}{|lllllll|}\hline & & & & \\ & \text { Observed Seat Belt Use by County: } \mathbf{1 9 9 9 - 2 0 0 2}\end{array}\right)$

The Office of Highway Safety evaluates compliance rates through analysis of collision data and statewide observational surveys of seat belt use. Observational surveys are conducted by observing shoulder harness use or non-use. The observational survey is a representative sample of the State and does not include all counties.

Table 27 shows the observed seat belt use for the Idaho Transportation Department (ITD) districts ${ }^{4}$ by vehicle type. District 1 (northern Idaho) had the highest overall usage at 71%, while district 4 (south central Idaho) had the overall lowest usage at 54%.

Table 27 Idaho Safety Belt Observation Survey: 2002 - Usage by Vehicle Type				
ITD District	Passenger Cars	Vans and S port Utility Vehicles	Pickup Trucks	All Vehicles
1	74.8\%	74.9\%	59.6\%	70.6\%
2	71.4\%	71.7\%	58.5\%	68.4\%
3	64.6\%	71.2\%	54.9\%	63.3\%
4	60.8\%	62.2\%	38.4\%	53.6\%
5	62.4\%	61.4\%	39.7\%	55.4\%
6	64.9\%	66.1\%	35.6\%	57.8\%
Statewide	66.4\%	70.0\%	50.9\%	62.9\%

Usage rates for the occupants of pickup trucks continue to be significantly lower than usage rates for other types of passenger vehicles. The usage rate for pickup truck occupants in 2002 ranged from a high of 59.6\% in District 1 (northern Idaho) to a low of 35.6% in District 6 (north eastern Idaho).

Seat belt usage varied by the type of roadway the vehicles were traveling on. It ranged from a high of 73.6% on urban interstates to a low of 41.9% on rural minor collectors. While there was virtually no difference between urban and rural sites, there was a difference of 5 percentage points between major and minor roads. The difference was not statistically significant. Major roads were defined as interstates and principal arterials. Minor roads were comprised of the rest of the roadway functional classifications.

Self-Reported Seat Belt Usage Results

Table 28 shows the self-reported seat belt use for people, ages 4 and older, in passenger cars, pickups, sport utility vehicles, and vans that were killed or seriously injured. Research has indicated there is a tendency for persons involved in collisions to falsely report compliance with the seat belt law and thus, self-reported use tends to overstate actual use ${ }^{5}$. Seat belt use by severely or fatally injured occupants can be more directly assessed by law enforcement officers or emergency medical personnel, and is therefore, more reliable.

Injury Type	f-Repor senger	Table eat Be s, Pick	$\begin{aligned} & \text { e: } 199 \\ & \text { S port U } \end{aligned}$	2 Vehicl	and Vans)	Avg. Change1999-2001
	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	
Fatalities -Restraints Used	22.8\%	28.7\%	29.7\%	37.5\%	26.2\%	14.7\%
Serious Injuries -Restraint Used	50.0\%	49.7\%	51.0\%	57.6\%	13.0\%	1.0\%

Of the 216 motor vehicle occupants killed in 2002, only 81 were using seat belts. The National Highway Traffic Safety Administration estimates seat belts are 50% effective in preventing fatalities and serious injuries. By this estimate, we can deduce that 81 lives were saved in 2002 by seat belt usage. An additional 68 lives could have been saved if everyone had buckled up.

Costs of Injuries

Table 29 illustrates the costs of injuries sustained by occupants, ages four and older, of passenger vehicles for persons both using and not using safety restraints.

Injury Type	sing S		Using S afety	
	S afety Restraints		Costs of Injuries	
	Used	Not Used	Used	Not Used
Fatality	81	135	\$248,005,740	\$413,342,901
Serious Injury	832	612	\$176,359,638	\$129,726,080
Visible Injury	3,272	1,414	\$138,713,638	\$59,945,319
Possible Injury	5,749	1,379	\$128,632,075	\$30,854,693
Total			\$691,711,091	\$633,868,993

Table 30 shows self-reported child safety seat use for children, under age 4 , in passenger cars, pickups, sport utility vehicles, and vans from 1999 to 2002. Overall, the use rate has increased from 78% in 1999 to 86% in 2002. Idaho Code requires every child, under the age of four, and weighing less than 40 pounds be restrained in a car safety seat that meets the federal standards when traveling in a noncommercial motor vehicle manufactured with seat belts after January 1, 1966.
$\left.\begin{array}{|ccccccc|}\hline & & \text { Table 30 } \\ \text { Self-Reported Child Safety } \\ \text { Seat Use by Injury Type: } \\ \text { (under age 4 in passenger cars, pickups, sport utility vehicles and vans) }\end{array}\right]$

The National Highway Traffic Safety Administration estimates child safety seats are 69% effective in preventing fatalities and serious injuries. By this estimate we can deduce that child safety seats could have saved 1 of the 2 unrestrained children killed in 2002. Additionally, 4 of the 6 unrestrained serious injuries may have been prevented if they had all been properly restrained.

Local Safety Restraint Usage

Table 31 presents self-reported restraint use rates for all motor vehicle occupants over the age of 4 involved in fatal and serious injury collisions for each county, comparing 1999 through 2002. Collision data provides an analysis of the restraint use at the local level. This information is self reported to the investigating officer after a collision. The self reported use is for all occupants, regardless of injury type, involved in fatal and serious injury crashes.
$\left.\begin{array}{|ccccccc|}\hline & & \text { Table 31 } & & & \\ \text { Self-Reported Restraint Use in Fatal and Serious Injury Crashes by County: } \mathbf{1 9 9 9 - 2 0 0 2} \\ \text { (persons in passenger cars, pickups, sport utility vehicles and vans only) }\end{array}\right]$

Table 31 (Continued) Self-Reported Restraint Use in Fatal and Serious Injury Crashes by County: 1999-2002 (persons in passenger cars, pickups, sport utility vehicles and vans only)						
County by Population	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
5,000-9,999						
Bear Lake	72.4\%	16.0\%	57.1\%	66.7\%	16.7\%	89.6\%
Benewah	42.9\%	18.8\%	40.0\%	43.2\%	7.9\%	28.5\%
Boise	65.2\%	65.9\%	72.7\%	64.0\%	-12.0\%	5.7\%
Caribou	48.0\%	66.7\%	52.2\%	47.5\%	-9.0\%	8.6\%
Clearwater	35.7\%	21.4\%	37.5\%	81.8\%	118.2\%	17.5\%
Lemhi	31.8\%	15.2\%	46.7\%	60.5\%	29.7\%	77.8\%
Power	36.7\%	31.0\%	42.3\%	48.0\%	13.4\%	10.4\%
Teton	38.9\%	37.5\%	35.7\%	45.5\%	27.3\%	-4.2\%
Valley	45.5\%	41.7\%	51.9\%	71.4\%	37.8\%	8.1\%
Washington	44.8\%	38.5\%	54.6\%	71.4\%	30.9\%	13.8\%
0-4,999						
Adams	46.7\%	11.1\%	33.3\%	92.3\%	177.0\%	61.9\%
Butte	20.0\%	28.6\%	33.3\%	88.9\%	166.7\%	29.8\%
Camas	75.0\%	33.3\%	81.8\%	100.0\%	22.2\%	45.0\%
Clark	60.0\%	69.2\%	75.0\%	36.4\%	-51.5\%	11.9\%
Custer	50.0\%	20.0\%	55.0\%	45.0\%	-18.2\%	57.5\%
Lewis	11.8\%	42.3\%	80.8\%	90.0\%	11.4\%	175.3\%
Lincoln	30.8\%	66.7\%	18.2\%	42.1\%	131.6\%	22.0\%
Oneida	51.6\%	60.7\%	64.3\%	45.5\%	-29.3\%	11.8\%
Statewide Average	55.9\%	58.3\%	60.7\%	65.7\%	8.2\%	4.2\%

Aggressive Driving

Table 32 shows information about collisions in Idaho from 1999 through 2002 involving aggressive driving. The behaviors that define aggressive driving are: failure to yield right of way, passed stop sign, exceeded posted speed, driving too fast for conditions, following too close, and disregarded signal. Aggressive driving is not to be confused with road rage, which is a deliberate and violent act against another driver and is a criminal offense.

An officer may indicate up to three contributing circumstances for each vehicle in a collision. Thus the total number of fatalities and injuries attributed to these behaviors in the top portion of the table do not equal the sum of the fatalities and injuries attributed to individual behaviors in the bottom of the table.

Table 32 Aggressive Driving Collisions: 1999-2002						
	1999	2000	2001	2002	Change 2001-2002	Avg. Change 1999-2001
Total Aggressive Driving Collisions	14,817	15,388	15,398	15,066	-2.2\%	2.0\%
Fatalities	147	120	128	138	7.8\%	-5.9\%
Serious Injuries	1,043	951	949	963	1.5\%	-4.5\%
Visible Injuries	3,256	3,358	3,254	3,223	-1.0\%	0.0\%
Possible Injuries	4,721	4,807	4,770	5,023	5.3\%	0.5\%
Number of Traffic Fatalities and Serious Injuries Involving:*						
Driving Too Fast for Conditions	459	395	359	357	-0.6\%	-11.5\%
Fail to Yield Right of Way	410	344	356	373	4.8\%	-6.3\%
Exceeded Posted Speed	174	188	202	184	-8.9\%	7.7\%
Passed Stop Sign	130	74	122	127	4.1\%	10.9\%
Following Too Close	103	104	127	106	-16.5\%	11.5\%
Disregarded Signal	67	75	48	44	-8.3\%	-12.0\%
Aggressive Driving Fatal and Serious Injury Rate per 100 M illion AVM T	8.31	7.80	7.53	7.70	2.2\%	-4.8\%
* Three contributing circumstances possible per unit involved in each collision						

In 2002, aggressive driving was a contributing factor in 57% of all collisions in Idaho. While two-thirds of all aggressive driving collisions occur in urban areas, 78% of the fatal aggressive driving collisions occur in rural areas. Only 22% of all aggressive driving collisions involve a single vehicle, while 43% of fatal aggressive driving collisions involve only one vehicle. Of the 50 fatal aggressive driving crashes that involved a single vehicle, 46 (or 92%) occurred in rural areas.

The economic cost of collisions involving aggressive driving was $\$ 897.2$ million dollars in 2002. This represents 56% of the total costs of Idaho collisions (as shown in Table 4).

Involvement in Aggressive Driving Collisions by Driver Age

Table 33 shows the involvement in aggressive driving collisions by driver age. Drivers, ages 19 and younger, are nearly 4 times as likely to be involved in aggressive driving collisions as all other drivers. While drivers ages 20 to 24 are nearly twice as likely as all other drivers to be involved in aggressive driving collisions. (Note: odds ratios are different than the involvement rates in the table below) Drivers between the ages of 15 and 22 represent more that one-third of the drivers involved in aggressive driving collisions.

Age	Table 33 Involvement in Aggressive Driving Collisions by Drivers Age: 2002							
	Number	\%	Number	\%	Involvement*	Number	\%	Involvement*
0-14	0	0.0\%	21	0.1\%		12	0.2\%	
15	4,223	0.5\%	133	0.9\%	1.9	52	0.9\%	1.9
16	11,506	1.3\%	602	3.9\%	3.1	229	3.8\%	3.0
17	16,026	1.8\%	907	5.9\%	3.3	370	6.1\%	3.5
18	17,284	1.9\%	1,008	6.5\%	3.5	400	6.6\%	3.5
19	18,011	2.0\%	888	5.8\%	2.9	379	6.3\%	3.2
20	17,834	2.0\%	662	4.3\%	2.2	243	4.0\%	2.1
21	17,083	1.9\%	608	3.9\%	2.1	216	3.6\%	1.9
22	18,369	2.0\%	553	3.6\%	1.8	210	3.5\%	1.7
23	17,752	1.9\%	504	3.3\%	1.7	191	3.2\%	1.6
24	16,689	1.8\%	417	2.7\%	1.5	148	2.5\%	1.3
25-34	158,555	17.4\%	2,700	17.5\%	1.0	1,054	17.5\%	1.0
35-44	173,847	19.1\%	2,164	14.1\%	0.7	827	13.7\%	0.7
45-54	175,943	19.3\%	1,704	11.1\%	0.6	681	11.3\%	0.6
55-64	119,672	13.1\%	1,001	6.5\%	0.5	393	6.5\%	0.5
65-74	74,604	8.2\%	551	3.6\%	0.4	227	3.8\%	0.5
75+	53,854	5.9\%	676	4.4\%	0.7	295	4.9\%	0.8
Not Stated or Other			296	1.9\%		96	1.6\%	
TOTALS	911,252		15,395			6,023		
* Involvement is calculated by dividing the percent of collisions by the percent of licensed drivers. Over-representation occurs when the value is greater than 1.0.								

Youthful Drivers

Table 34 shows the collisions involving youthful drivers. Youthful drivers are drivers age 15 to 19. In 2002, one out of every four collisions involved a youthful driver. In 2002, youthful drivers were involved in twice as many crashes as you would expect them to be and were 2.7 times as likely as all other drivers to be involved in a crash.

Table 34Collisions Involving Youthful Drivers (15 to 19 Years Old): 1999-2002						
	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	Avg. Change 1999-2001
Total Collisions	7,258	7,490	6,910	6,961	0.7\%	-2.3\%
Fatalities	66	48	64	45	-29.7\%	3.0\%
Serious Injuries	463	437	431	416	-3.5\%	-3.5\%
Visible Injuries	1,632	1,665	1,456	1,564	7.4\%	-5.3\%
Possible Injuries	2,382	2,341	2,164	2,415	11.6\%	-4.6\%
Drivers 15-19 in Fatal \&						
\% of all Drivers in Fatal \& Serious Injury Collisions	15.9\%	16.0\%	16.1\%	14.7\%	-8.8\%	0.6\%
Licensed Drivers 15-19	77,943	79,353	69,812	67,050	-4.0\%	-5.1\%
\% of Total Licensed Drivers	8.7\%	8.9\%	7.7\%	7.4\%	-4.4\%	-5.8\%
Driver Involvement Rate*	1.82	1.81	2.07	1.99	-3.7\%	6.9\%
Teen Drivers in Fatal Crashes	64	47	51	40	-21.6\%	-9.0\%
Impaired Teen Drivers in Fatal Crashes	11	8	12	8	-33.3\%	11.4\%
\% of Youthful Drivers Involved in Fatal Crashes that were Impaired	17.2\%	17.0\%	23.5\%	20.0\%	-15.0\%	18.6\%
*The Driver Involvement Rate is the percent of drivers invovled in fatal and serious injury collisions divided by percen of licensed drivers. Over-representation occurs when the value is greater than 1.0.						

In 2002, the economic cost of collisions involving youthful drivers was $\$ 356.3$ million dollars. This represents 22% of the total cost of collisions in 2002 (as shown in Table 4).

Emergency Medical Services

Table 35 shows Emergency Medical Services response to collisions in Idaho. EMS response to collisions indicates the number of collisions where an EMS unit responded and transported persons to medical facilities.

Table 35 Emergency Medical Services Response to Collisions: 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Total Collisions	25,076	26,241	26,090	26,477	1.5\%	2.0\%
Response to Fatal \& Injury Collisions	3,972	4,124	4,142	4,842	16.9\%	2.1\%
\% of Fatal \& Injury Collisions	41.8\%	42.8\%	43.8\%	48.8\%	11.5\%	2.4\%
Persons Killed or Injured in Collisions	14,347	14,552	14,280	15,026	5.2\%	-0.2\%
Transported from Rural Areas	2,401	3,536	3,332	3,596	7.9\%	20.8\%
Transported from Urban Areas	3,739	2,637	2,577	2,732	6.0\%	-15.9\%
Total Transported by EM S	6,140	6,173	5,909	6,328	7.1\%	-1.9\%
\% of Killed/Injured Transp orted	42.8\%	42.4\%	41.4\%	42.1\%	1.8\%	-1.7\%
Trapped and Extricated	546	578	576	583	1.2\%	2.8\%
Fatal/Serious Injuries Transported by Helicopter	148	184	226	243	7.5\%	23.6\%

The availability and quality of services provided by local Emergency Medical Services may mean the difference between life and death for someone injured in a traffic collision. Improved post-crash victim care works to reduce the severity of trauma incurred by collision victims. The sooner someone receives appropriate medical care, the better their chances of recovery. This care is especially critical in rural areas because of the time needed to transport a victim to a trauma hospital.

Pedestrians in Collisions

Table 36 gives information about pedestrians in collisions from 1999 to 2002. Pedestrian collisions increased by 13% in 2002, while the number of pedestrians killed in motor vehicle collisions increased by 25%. Of all pedestrians involved in collisions in 2002, 99% received some degree of injury. Of those injured or killed in pedestrian collisions, 18% were between the ages of 4 and 14. Of the pedestrians killed in motor vehicle collisions in 2002, 47% were over the age of 40 . Impaired pedestrians were involved in 12% of all pedestrian collisions and 33% of fatal pedestrian collisions.

Table 36Pedestrians in Collisions:1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Pedestrian Collisions	181	198	175	199	13.7\%	-1.1\%
Fatalities	14	6	12	15	25.0\%	21.4\%
Serious Injuries	59	60	53	53	0.0\%	-5.0\%
Visible Injuries	74	77	68	96	41.2\%	-3.8\%
Possible Injuries	38	64	54	41	-24.1\%	26.4\%
Pedestrians in Collisions	185	210	190	208	9.5\%	2.0\%
Pedestrian Fatal and Serious Injuries	73	66	65	68	4.6\%	-5.6\%
\% of All Fatal and Serious Injuries	3.6\%	3.3\%	3.5\%	3.4\%	-2.7\%	-2.0\%
Imp aired Fatal and Serious Injuries*	8	4	15	13	-13.3\%	112.5\%
\% of Pedestrian Fatal \& Serious Injuries	11.0\%	6.1\%	23.1\%	19.1\%	-17.2\%	118.0\%
Pedestrians in Fatal and Injury Collisions by Age						
0 to 3	5	4	3	7	133.3\%	-22.5\%
4 to 14	53	46	47	37	-21.3\%	-5.5\%
15 to 19	30	39	26	29	11.5\%	-1.7\%
20 to 24	14	10	14	23	64.3\%	5.7\%
25 to 34	15	32	25	29	16.0\%	45.7\%
35 to 44	22	17	25	25	0.0\%	12.2\%
45 to 54	18	25	21	21	0.0\%	11.4\%
55 to 64	14	12	10	8	-20.0\%	-15.5\%
65 and Older	9	15	15	22	46.7\%	33.3\%
M issing/Unknown Age	5	8	4	5	25.0\%	5.0\%

In 2002, the economic cost of collisions involving pedestrians was $\$ 62.2$ million dollars. This represents 4% of the total cost of Idaho collisions (as shown in Table 4).

Bicyclists in Collisions

Table 37 gives information about bicyclists in collisions from 1999 to 2002. The number of bicycle collisions increased in 2002 by 15%. Of the bicyclists involved in collisions in $2002,97 \%$ received some degree of injury. Of all bicyclists involved in collisions in 2002, 58% were between the ages of 4 and 19. The percentage of bicyclists involved in collisions that were wearing helmets continues to remain very low.

Table 37 Bicyclists in Collisions: 1999-2002						
	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	Avg. Change 1999-2001
Bicy cle Collisions	354	334	274	314	14.6\%	-11.8\%
Fatalities	4	3	2	3	50.0\%	-29.2\%
Serious Injuries	53	49	44	51	15.9\%	-8.9\%
Visible Injuries	197	190	161	170	5.6\%	-9.4\%
Possible Injuries	101	93	70	92	31.4\%	-16.3\%
Bicyclists in Collisions	364	338	283	326	15.2\%	-11.7\%
Bicy cle Fatal and Serious Injuries	57	52	46	54	17.4\%	-10.2\%
\% of All Fatal and Serious Injuries	2.8\%	2.6\%	2.5\%	2.7\%	9.2\%	-7.0\%
Bicy clists in Collisions Wearing Helmets	46	49	31	39	25.8\%	-15.1\%
\% of Bicy clists Wearing Helmets	12.6\%	14.5\%	11.0\%	12.0\%	9.2\%	-4.9\%
Imp aired Fatal and Serious Injuries*	3	2	1	3	200.0\%	-41.7\%
\% of Bicy cle Fatal \& Serious Injuries	5.3\%	3.8\%	2.2\%	5.6\%	155.6\%	-35.2\%
Bicy clists in Collisions by Age						
0 to 3	2	1	1	0	-100.0\%	150.0\%
4 to 14	140	126	102	127	24.5\%	-14.5\%
15 to 19	67	67	47	63	34.0\%	-14.9\%
20 to 24	38	25	28	39	39.3\%	-11.1\%
25 to 34	36	36	27	24	-11.1\%	-12.5\%
35 to 44	28	47	30	32	6.7\%	15.8\%
45 to 54	23	23	28	21	-25.0\%	10.9\%
55 to 64	8	4	9	7	-22.2\%	37.5\%
65 and Older	4	2	3	7	133.3\%	0.0\%
M issing/Unknown Age	12	7	8	6	-25.0\%	-13.7\%

In 2002, the economic cost of collisions involving bicyclists was $\$ 29.3$ million dollars. This represents 2% of the total cost of Idaho collisions (as shown in Table 4).

Motorcyclists in Collisions

Table 38 shows data for motorcyclists involved in collisions from 1999 to 2002. The number of motorcycle collisions increased again in 2002 after a steady decrease over recent years prior to 2000. Of all motorcyclists involved in collisions in 2002, 86% received some degree of injury. Of all motorcycle collisions, 10% involved impaired driving, while 27% of fatal motorcycle collisions involved impaired driving. Just under half (49%) of all motorcycle collisions were single vehicle collisions, while 45% of fatal motorcycle crashes involved only a single motorcycle.

While Idaho law requires all motorcycle operators and passengers under the age of 18 to wear a helmet, just 36% of those riders involved in collisions in 2002 were wearing a helmet.

Table 38 Motorcyclists in Collisions: 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
M otorcy cle Collisions	251	363	380	403	6.1\%	24.7\%
Fatalities	12	18	19	11	-42.1\%	27.8\%
Serious Injuries	94	117	102	130	27.5\%	5.8\%
Visible Injuries	107	171	207	185	-10.6\%	40.4\%
Possible Injuries	45	57	75	73	-2.7\%	29.1\%
M otorcy clists in Collisions	290	422	457	465	1.8\%	26.9\%
Registered M otorcy cles	40,968	42,165	39,434	43,245	9.7\%	-1.8\%
M otorcy clists Wearing Helmets	98	151	162	175	8.0\%	30.7\%
\% M otorcy clists Wearing Helmets	33.8\%	35.8\%	35.4\%	37.6\%	6.2\%	2.5\%
M otorcy cle Drivers in Collisions by Age						
0 to 14	4	6	5	3	-40.0\%	16.7\%
15 to 19	16	28	19	20	5.3\%	21.4\%
20 to 24	47	58	69	67	-2.9\%	21.2\%
25 to 34	53	74	73	70	-4.1\%	19.1\%
35 to 44	48	78	76	80	5.3\%	30.0\%
45 to 54	59	78	90	125	38.9\%	23.8\%
55 to 64	16	31	42	36	-14.3\%	64.6\%
65 and up	7	11	12	3	-75.0\%	33.1\%
M issing/Unknown	1	2	3	3	0.0\%	75.0\%

In 2002, the economic cost of collisions involving motorcyclists was $\$ 70.8$ million dollars. This represents 4% of the total cost of Idaho collisions (as shown in Table 4).

Commercial Motor Vehicles in Collisions

Table 39 shows Commercial Motor Vehicle (CMV) collisions for 1999 through 2002. For the purposes of collision reporting, CMV's are buses, truck tractors, tractor-trailer combinations, trucks with more than two axles, trucks with more than two tires per axle, or trucks exceeding 8,000 pounds gross vehicle weight. This category also includes pickups with dual rear wheels.

Table 39Commercial Motor Vehicle Collision Rates:1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Fatal Collisions	29	27	35	32	-8.6\%	11.4\%
Injury Collisions	571	509	542	526	-3.0\%	-2.2\%
Total Collisions	1,868	1,878	1,893	1,766	-6.7\%	0.7\%
Commercial VM T (100 millions)	24.1	23.7	25.2	25.4	1.1\%	2.2\%
Fatal Collision Rate	1.2	1.1	1.4	1.3	-9.5\%	8.4\%
Injury Collision Rate	23.7	21.5	21.5	20.7	-4.0\%	-4.5\%
Total Collision Rate	77.5	79.2	75.2	69.4	-7.7\%	-1.4\%

Table 40 presents the location of CMV collisions by severity and roadway type. While 58% of all CMV collisions occurred on rural roadways, 81% of fatal CMV collisions took place on rural roadways.

The largest percentage of all CMV collisions (40%) occurred on local roads, while the largest percentage of fatal CMV collisions (63\%) took place on US and State highways.

Loca	of	ercial	Ta	$\begin{aligned} & 10 \\ & \text { Collisio } \end{aligned}$	Ro	Type:		
								ons
Interstate								
Rural	5	15.6\%	67	12.7\%	175	14.5\%	247	14.0\%
Urban	3	9.4\%	42	8.0\%	81	6.7\%	126	7.1\%
U.S. or State Highway								
Rural	18	56.3\%	175	33.3\%	282	23.3\%	475	26.9\%
Urban	2	6.3\%	64	12.2\%	149	12.3\%	215	12.2\%
Local								
Rural	3	9.4\%	90	17.1\%	213	17.6\%	306	17.3\%
Urban	1	3.1\%	88	16.7\%	308	25.5\%	397	22.5\%
Total	$\begin{gathered} 32 \\ 1.8 \% \end{gathered}$		$\begin{gathered} 526 \\ 29.8 \% \end{gathered}$		$\begin{gathered} 1208 \\ 68.4 \% \end{gathered}$		1766	

Table 41 shows the number of collisions by severity that each type of commercial motor vehicle was involved in for 1999 to 2002.

Table 41 Collisions Involving Commercial Motor Vehicles by Vehicle Type : 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Bus						
Fatal Collisions	2	0	4	2	-50.0\%	100.0\%
Injury Collisions	41	34	42	42	0.0\%	3.2\%
Property Damage Collisions	110	93	118	116	-1.7\%	5.7\%
Single Unit Truck						
Fatal Collisions	8	6	11	8	-27.3\%	29.2\%
Injury Collisions	210	190	211	175	-17.1\%	0.8\%
Property Damage Collisions	427	437	417	360	-13.7\%	-1.1\%
Single Unit Truck with Trailer						
Fatal Collisions	3	3	1	0	-100.0\%	-33.3\%
Injury Collisions	47	36	20	25	25.0\%	-33.9\%
Property Damage Collisions	116	106	83	72	-13.3\%	-15.2\%
Truck Tractor Only (Bobtail)						
Fatal Collisions	0	0	1	1	0.0\%	50.0\%
Injury Collisions	6	7	5	6	20.0\%	-6.0\%
Property Damage Collisions	17	16	15	21	40.0\%	-6.1\%
Single-Trailer Configurations						
Fatal Collisions	14	14	15	19	26.7\%	3.6\%
Injury Collisions	242	204	248	253	2.0\%	2.9\%
Property Damage Collisions	513	591	601	559	-7.0\%	8.4\%
Double-Trailer Configurations						
Fatal Collisions	2	5	4	3	-25.0\%	65.0\%
Injury Collisions	43	47	32	40	25.0\%	-11.3\%
Property Damage Collisions	112	111	104	108	3.8\%	-3.6\%
Trip le-Trailer Configurations						
Fatal Collisions	0	0	0	0	0.0\%	0.0\%
Injury Collisions	2	4	1	1	0.0\%	12.5\%
Property Damage Collisions	10	12	14	11	-21.4\%	18.3\%

** Crashes between vehicle types are not mutually exclusive. In other words, a crash involving a bus and a single unit truck would be represented in both catagories

Table 42 shows different vehicle types as a percent of all vehicles in collisions excluding pedestrians, bicyclists, and non-motor vehicles.

Table 42 Vehicles in All Collisions by Vehicle Type: 1999-2002						
Vehicle Type	1999	2000	2001	2002	$\begin{aligned} & \text { Change } \\ & \text { 2001-2002 } \end{aligned}$	Avg. Change 1999-2001
Passenger Cars	22,320	23,149	22,421	23,102	3.0\%	0.3\%
\%	50.9\%	50.6\%	49.3\%	49.9\%	1.3\%	-1.6\%
Pickups, Vans, and						
Sport Utility Vehicles (SUV's)	18,807	19,790	20,140	20,334	1.0\%	3.5\%
\%	42.9\%	43.2\%	44.3\%	43.9\%	-0.8\%	1.6\%
M edium Trucks*	819	793	770	652	-15.3\%	-3.0\%
\%	1.9\%	1.7\%	1.7\%	1.4\%	-16.8\%	-4.8\%
Large Trucks**	991	1,032	1,067	1,057	-0.9\%	3.8\%
\%	2.3\%	2.3\%	2.3\%	2.3\%	-2.6\%	1.9\%
Buses	155	127	166	163	-1.8\%	6.3\%
\%	0.4\%	0.3\%	0.4\%	0.4\%	-3.5\%	5.0\%
M otorcy cles	257	373	392	415	5.9\%	25.1\%
\%	0.6\%	0.8\%	0.9\%	0.9\%	4.0\%	22.3\%
All Other***	472	508	545	577	5.9\%	7.5\%
\%	1.1\%	1.1\%	1.2\%	1.2\%	4.0\%	5.5\%
TOTALS	43,821	45,772	45,501	46,300	1.8\%	1.9\%
*Medium trucks are single unit trucks with more than 2 tires per axle or more than 2 axles. **Large trucks include bobtail tractors and tractor-semitrailer combinations. ***Includes Farm Equipment, Recreational Vehicles, Construction, ATVs, Trains, Snowmobiles, Other and Unknown or Missing data.						

Table 43 presents injury severity comparisons by vehicle type for all persons in CMV collisions. In 2002 there were 4,666 persons involved in CMV collisions. Occupants of passenger vehicles combined to comprise 43% of the persons involved in CMV collisions. Of the 37 fatalities that occurred in CMV collisions, 84% were occupants of passenger cars, pickups, vans, or other vehicles while 16% were occupants of CMV's.

Table 43 Comparison of Injury Severity for Persons in Commercial Motor Vehicle Collisions: 2002					
Injury S everity	Commercial Motor Vehicle	Car	Pickup, Van and S UVs*	All Other**	Totals
Fatalities	6	13	12	6	37
\% of Fatalities	16.2\%	35.1\%	32.4\%	16.2\%	0.8\%
Serious Injuries	30	62	55	4	151
\% of Serious Injuries	19.9\%	41.1\%	36.4\%	2.6\%	3.2\%
Visible Injuries	111	83	76	4	274
\% of Visible Injuries	40.5\%	30.3\%	27.7\%	1.5\%	5.9\%
Possible Injuries	143	143	121	4	411
\% of Possible Injuries	34.8\%	34.8\%	29.4\%	1.0\%	8.8\%
Non-Injury	2,211	726	647	35	3,619
\% of Non- Injury	61.1\%	20.1\%	17.9\%	1.0\%	77.6\%
Unknown	90	33	44	7	174
\% of Unknown	51.7\%	19.0\%	25.3\%	4.0\%	3.7\%
Column Totals	2,591	1,060	955	60	4,666
(\% OF TOTAL)	55.5\%	22.7\%	20.5\%	1.3\%	
*SUV is an acronym for **Includes pedestrians,	port Utility Vehicle yclists, motorcycli	m vehicl	struction equip	RVs, and trains	

In 2002, the economic cost of collisions involving commercial motor vehicles was $\$ 169.0$ million dollars. This represents 10% of the total cost of Idaho collisions (as shown in Table 4).

Motor Vehicle Collisions in Work Zones

Table 44 shows the collisions that took place in work zones for 1999 through 2002.

Table 44 Collisions in Work Zones: 1999-2002						
	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1999-2001
Work Zone Collisions	258	309	256	266	3.9\%	1.3\%
Fatalities	1	8	6	2	-66.7\%	337.5\%
Serious Injuries	16	25	20	27	35.0\%	18.1\%
Visible Injuries	45	65	49	49	0.0\%	9.9\%
Possible Injuries	94	89	120	70	-41.7\%	14.8\%
\% All Collisions	1.0\%	1.2\%	1.0\%	1.0\%	2.4\%	1.9\%
Workers Injured	0	1	9	4	100.0\%	-50.0\%

Prior to 2001, most of the crashes that have taken place in work zones have not involved workers in the construction zone. The 9 worker injuries, 2 of which were fatal injuries, in 2001, resulted from a single collision on I-15. The 4 workers injured in 2002 resulted from 3 separate collisions; 2 sustained serious injuries and 2 sustained visible injuries. Workers on the roadway are especially vulnerable since their attention is focused on the task at hand rather than on the traffic passing by.

Single vehicle collisions comprised 20% of the collisions in work zones in 2002, although neither of the fatal collisions was a single vehicle collision. While overturn and other object - not fixed were the predominant most harmful events in single vehicle collisions in work zones, rear end was the predominant most harmful event for multiple vehicle collisions in work zones.

Table 45 shows work zone collisions by road type.

Table 45 Work Zone Collisions by Roadway Type: 2002								
	Fatal		Injury		Property Damage		All Collisions	
Interstate								
Rural	0	0.0\%	6	6.7\%	18	10.3\%	24	9.0\%
Urban	0	0.0\%	23	25.6\%	40	23.0\%	63	23.7\%
U.S. or State Highway								
Rural		50.0\%	18	20.0\%	27	15.5\%	46	17.3\%
Urban	1	50.0\%	21	23.3\%	36	20.7\%	58	21.8\%
Local								
Rural	0	0.0\%	4	4.4\%	14	8.0\%	18	6.8\%
Urban	0	0.0\%	18	20.0\%	39	22.4\%	57	21.4\%
Total	$\begin{gathered} 2 \\ 0.8 \% \end{gathered}$		$\begin{gathered} 90 \\ \mathbf{3 3 . 8 \%} \end{gathered}$		$\begin{gathered} 174 \\ \mathbf{6 5 . 4 \%} \end{gathered}$		266	

Table 46 shows the severity of crashes by transportation district. Transportation district boundaries can be found in Appendix A.

In 2002, the economic cost of collisions in work zones was $\$ 15.9$ million dollars. This represents 1% of the total cost of Idaho collisions (as shown in Table 4).

Glossary of Terms

The following terms are used throughout this report and are provided to clarify the meaning of the data.

BICYCLE (PEDACYCLE): Every vehicle propelled exclusively by human power upon which any person may ride, having two tandem wheels, except scooters and similar devices.

CHILD SAFETY SEAT: A car safety seat that meets the requirements of Federal Motor Vehicle Standard 213. Every child under the age of four and weighing less than 40 pounds and is transported in a motor vehicle must be properly restrained in such a seat.

COLLISION (TRAFFIC): An unintended event that causes a death, injury, or damage and involves a motor vehicle on a public roadway.

DRIVER (OPERATOR): Every person who is in actual physical control of a motor vehicle upon a highway.

FATAL COLLISION: Any motor vehicle collision that resulted in the death of one or more persons due to injuries received from the collision within 30 days of the collision.

FATALITY: An individual involved in a motor vehicle collision who died within 30 days of the collision as a result of injuries sustained in the collision.

HEAVY TRUCK: A motor vehicle exceeding 8,000 pounds gross weight; has two or more wheels per axle or has more than two axles; and is designed, used, or maintained primarily for the transportation of property.

IMPAIRED DRIVING COLLISION: Any collision in which an officer indicated on the collision report that alcohol or drugs were used, or were a contributing factor in the collision.

INJURY: Bodily harm to a person as a result of a motor vehicle collision.

INJURY SEVERITY:

Fatal Injury (Death) - Any injury that results in the death of a person within 30 days of the collision in which the injury was sustained.

Serious Injury (Incapacitating Injury) - Any injury, other than a fatal injury, which prevents the injured person from walking, driving, or normally continuing the activities the person was capable of performing before the injury occurred.

Visible Injury (Non-incapacitating, Evident Injury) - Any injury, other than a fatal injury or incapacitating injury, which is evident to observers at the scene of the collision in which the injury occurred.

Possible Injury - Any injury reported or claimed which is not a fatal injury, incapacitating injury, or non-incapacitating, evident injury.

LICENSED DRIVER: A person who is licensed by Idaho to operate a motor vehicle on public highways. A person who has reached the age of 15 years, and who has successfully completed an approved driver's training course, may apply for a class "D" license. Driving privileges are restricted to daylight hours only until the age of 16 .

LOCAL ROAD: Any road other than an Interstate, U.S. or State Highway

MOTOR VEHICLE: Every motorized vehicle which is self-propelled or propelled by electric power obtained from overhead trolley wires but not operated upon rails except motorized wheelchairs.

Glossary of Terms (Continued)

OCCUPANT: A person who is in or on a vehicle.

PASSENGER: Any occupant of a vehicle other than its driver.

PEDESTRIAN: Any person afoot and any person operating a wheelchair or motorized wheelchair.

PROPERTY DAMAGE ONLY: Any collision in which there was property damage of $\$ 751$ or more to any one person but no injuries or fatalities.

RURAL: All areas, incorporated and unincorporated, with a population of less than 5,000 people.

SEAT BELT: A device designed to hold the occupant of a motor vehicle in the seat of a vehicle that was manufactured with safety belts in compliance with Federal Motor Vehicle safety standard number 208. Each occupant of the front seat of a motor vehicle which has a gross vehicle weight of not more than 8,000 pounds, and so manufactured, shall have a seat belt properly fastened about his body at all times when the vehicle is in motion.

STATE HIGHWAY SYSTEM: Includes all Interstate, U.S. and State highways (i.e. I-84, US 95, SH 75)

TRACTOR: A motor vehicle designed and used primarily for drawing other vehicles but not so constructed as to carry a load other than part of the weight of the vehicle and load so drawn.

URBAN: Any incorporated area with a population of 5,000 or more.

VEHICLE: Every device in, upon, or by which any person or property is or may be transported or drawn upon a highway, excepting devices used exclusively upon stationary rails or tracks (examples, bicycle, horse-drawn carriage).

VIOLATION: A conviction of a misdemeanor charge involving a moving traffic violation, or an admission or judicial determination of the commission of an infraction involving a moving traffic infraction, except bicycle infractions.

References and Notes

1. U.S. Department of Transportation, Federal Highway Administration, Technical Advisory: Motor Vehicle Accident Costs, T 7570.2, October 31,1994.
2. Blincoe, L.J., et al, The Economic Cost of Motor Vehicle Crashes, 2000, May, 2002. Washington, DC: U.S. Department of Transportation, National Highway Traffic Safety Administration, DOT HS 809446.
3. Haddon and S. Baker, "Injury Control", Chapter 8, Preventive and Community Medicine, Edited by C. Clark and B. MacMahon, Title Brown and Co., New York, 1987.
4. Highway District boundaries: District I - North Idaho (Boundary, Bonner, Kootenai, Benewah, and Shoshone Counties), District II - North Central Idaho (Latah, Nez Perce, Lewis, Clearwater, and Idaho Counties), District III - Southwest Idaho (Adams, Valley, Washington, Payette, Gem, Boise, Canyon, Ada, Owyhee, and Elmore Counties), District IV - South Central Idaho (Camas, Blaine, Gooding, Lincoln, Minidoka, Jerome, Twin Falls, and Cassia Counties), District V - Southeast Idaho (Bingham, Power, Bannock, Caribou, Oneida, Franklin, and Bear Lake Counties) and District VI Eastern Idaho (Lemhi, Custer, Butte, Clark, Fremont, Jefferson, Madison, Teton, and Bonneville Counties).
5. Dean, J. Michael, Reading, James C., and Nechodom, Patricia J., Overreporting and Measured Effectiveness of Seat Belts in Motor Vehicle Crashes in Utah, Transportation Research Record 1485, Transportation Research Board, National Research Council, National Academy Press, 1995.

APPENDIX A: Maps of Fatal Collision Locations

Each spot indicates the location of a fatal collision. The number of fatalities for each transportation district is also given. The maps are intended to give general locations of fatal collisions; the precise location cannot be determined from maps. For precise locations or for the number of collisions on a given roadway, please contact the Office of Highway Safety.

APPENDIX B: State Highway System Crash Data

The Idaho Transportation department is responsible for building and maintaining the State Highway System. The State Highway System includes the Interstate highways, US highways, and State highways. All other roads fall under the jurisdiction of counties, cities or local highway districts.

Collision Information for Selected Routes on the State Highway System: 1998-2002

US 2	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	3	1	1	0	5
Fatalities	0	3	1	1	0	5
Total Collisions	73	94	73	85	60	385
Average Daily Traffic	3,971	4,134	4,225	4,291	4,296	20,918
Fatal Collision Rate	0.0	4.5	1.5	1.4	0.0	$\mathbf{1 . 5}$
Total Collision Rate	113.6	140.5	106.7	122.4	86.3	$\mathbf{1 1 3 . 7}$

US 12	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	1998-2002 Totals
Fatal Collis ions	4	2	3	5	3	17
Fatalities	8	2	4	5	3	22
Total Collisions	172	165	168	198	201	904
Average Daily Traffic	2,186	2,167	2,201	2,144	2,135	10,841
Fatal Collision Rate	3.0	1.5	2.2	3.8	2.3	$\mathbf{2 . 5}$
Total Collision Rate	127.8	123.6	123.9	149.9	152.8	$\mathbf{1 3 5 . 5}$

US 20	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	7	8	11	12	14	52
Fatalities	9	13	13	14	19	68
Total Collis ions	896	877	869	929	955	4,526
Average Daily Traffic	4,903	5,072	5,129	5,179	5,452	25,735
Fatal Collision Rate	1.3	1.4	1.9	2.0	2.3	$\mathbf{1 . 8}$
Total Collision Rate	161.0	152.4	149.3	158.1	154.4	$\mathbf{1 5 5 . 0}$

US 26	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	3	6	5	7	7	28
Fatalities	3	8	7	8	7	33
Total Collis ions	162	160	177	200	205	904
Average Daily Traffic	2,641	2,672	2,718	2,783	2,881	13,695
Fatal Collision Rate	2.4	4.8	3.9	5.3	5.2	$\mathbf{4 . 3}$
Total Collision Rate	130.1	127.0	138.1	152.4	150.9	$\mathbf{1 4 0 . 0}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

US $\mathbf{3 0}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	5	5	7	4	5	26
Fatalities	6	5	9	4	6	30
Total Collisions	321	326	331	329	354	1,661
Average Daily Traffic	3,579	3,716	3,830	3,897	3,890	18,912
Fatal Collision Rate	2.0	1.9	2.6	1.5	1.8	$\mathbf{2 . 0}$
Total Collision Rate	127.6	124.7	122.9	120.1	129.4	$\mathbf{1 2 4 . 9}$

US 89	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	1	2	1	4
Fatalities	0	0	1	2	1	4
Total Collisions	21	17	42	24	32	136
Average Daily Traffic	1,494	1,573	1,624	1,639	1,529	7,859
Fatal Collision Rate	0.0	0.0	3.9	7.6	4.1	$\mathbf{3 . 2}$
Total Collision Rate	88.0	67.6	161.9	91.7	131.0	$\mathbf{1 0 8 . 3}$

US 91	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	5	2	1	2	3	13
Fatalities	6	2	1	3	4	16
Total Collisions	295	297	253	252	247	1,344
Average Daily Traffic	3,883	3,940	4,043	4,075	4,119	20,060
Fatal Collision Rate	4.2	1.7	0.8	1.6	2.4	$\mathbf{2 . 1}$
Total Collision Rate	247.9	246.0	204.3	201.8	195.7	$\mathbf{2 1 8 . 7}$

US 93	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	6	9	1	8	8	32
Fatalities	8	12	5	12	9	46
Total Collis ions	424	445	412	483	512	2,276
Average Daily Traffic	2,088	1,988	1,992	2,044	2,082	10,193
Fatal Collision Rate	1.9	2.9	0.3	2.5	2.5	$\mathbf{2 . 0}$
Total Collision Rate	131.1	144.5	133.5	152.5	158.7	$\mathbf{1 4 4 . 1}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

US 95	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	23	28	21	18	21	111
Fatalities	25	35	28	20	25	133
Total Collisions	1,128	1,338	1,183	1,237	1,278	6,164
Average Daily Traffic	4,241	4,293	4,308	4,378	4,425	21,645
Fatal Collision Rate	2.8	3.3	2.5	2.1	2.4	$\mathbf{2 . 6}$
Total Collision Rate	135.7	159.1	140.2	144.2	147.4	$\mathbf{1 4 5 . 3}$

SH 3	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	4	1	3	2	10
Fatalities	0	4	1	3	3	11
Total Collis ions	102	97	94	101	93	487
A verage Daily Traffic	1,459	1,496	1,446	1,480	1,500	7,381
Fatal Collision Rate	0.0	6.2	1.6	4.7	3.1	$\mathbf{3 . 1}$
Total Collision Rate	162.3	150.5	150.9	158.4	143.9	$\mathbf{1 5 3 . 1}$

SH 6	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$
Totals						

SH 8	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	1998-2002 Totals
Fatal Collis ions	0	1	2	0	2	5
Fatalities	0	1	2	0	2	5
Total Collis ions	142	129	134	89	125	619
Average Daily Traffic	2,837	2,796	2,817	2,815	2,768	14,033
Fatal Collision Rate	0.0	2.3	4.5	0.0	4.6	$\mathbf{2 . 3}$
Total Collision Rate	317.5	292.7	301.8	200.6	286.5	$\mathbf{2 7 9 . 9}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 13	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	1	0	0	0	0	1
Fatalities	0	1	0	0	0	1
Total Collisions	29	29	32	24	26	140
A verage Daily Traffic	1,534	1,553	1,534	1,505	1,476	7,601
Fatal Collision Rate	6.6	0.0	0.0	0.0	0.0	$\mathbf{1 . 3}$
Total Collision Rate	190.6	188.2	210.3	160.8	177.6	$\mathbf{1 8 5 . 6}$

SH 14	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	0	0	0
Fatalities	0	0	0	0	0	0
Total Collisions	6	11	8	7	6	38
A verage Daily Traffic	520	520	520	520	520	2,600
Fatal Collision Rate	0.0	0.0	0.0	0.0	0.0	$\mathbf{0 . 0}$
Total Collision Rate	63.8	117.0	85.1	74.5	63.8	$\mathbf{8 0 . 9}$

SH 16	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	1998-2002 Totals
Fatal Collisions	1	2	0	1	0	4
Fatalities	1	2	0	2	0	5
Total Collis ions	41	54	48	38	48	229
Average Daily Traffic	6,640	6,800	6,920	7,880	8,210	36,450
Fatal Collision Rate	3.0	5.8	0.0	2.5	0.0	$\mathbf{2 . 2}$
Total Collision Rate	121.5	156.2	136.5	94.9	115.0	$\mathbf{1 2 3 . 6}$

SH 19	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	1	1	2
Fatalities	0	0	0	1	1	2
Total Collisions	31	38	38	38	48	193
Average Daily Traffic	4,532	4,595	4,611	4,628	4,675	23,041
Fatal Collision Rate	6.1	3.9	0.0	1.8	7.5	$\mathbf{3 . 8}$
Total Collision Rate	116.0	140.2	139.7	139.2	174.1	$\mathbf{1 4 2 . 0}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 2 1	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	3	2	0	1	4	10
Fatalities	4	2	0	2	5	13
Total Collisions	75	72	84	102	88	421
Average Daily Traffic	1,070	1,117	1,144	1,188	1,159	5,678
Fatal Collision Rate	6.1	3.9	0.0	1.8	7.5	$\mathbf{3 . 8}$
Total Collision Rate	152.2	140.0	159.4	186.4	164.9	$\mathbf{1 6 1 . 0}$

SH 22	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	0	0	0
Fatalities	0	0	0	0	0	0
Total Collisions	4	2	8	5	1	20
Average Daily Traffic	250	250	260	280	270	1,310
Fatal Collision Rate	0.0	0.0	0.0	0.0	0.0	$\mathbf{0 . 0}$
Total Collision Rate	99.8	49.9	191.9	111.4	23.1	$\mathbf{9 5 . 2}$

SH 24	1998	1999	2000	2001	2002	$\begin{gathered} 1998-2002 \\ \text { Totals } \end{gathered}$
Fatal Collis ions	0	1	0	0	0	1
Fatalities	0	1	0	0	0	1
Total Collis ions	52	62	41	46	65	266
Average Daily Traffic	1,446	1,436	1,466	1,499	1,462	7,308
Fatal Collision Rate	0.0	2.8	0.0	0.0	0.0	0.6
Total Collis ion Rate	146.9	176.3	114.2	125.4	181.5	148.6
SH 25	1998	1999	2000	2001	2002	$\begin{gathered} 1998-2002 \\ \text { Totals } \\ \hline \end{gathered}$
Fatal Collisions	3	1	2	0	0	6
Fatalities	3	1	2	0	0	6
Total Collisions	71	79	61	64	42	317
Average Daily Traffic	1,889	1,925	1,945	2,044	2,069	9,872
Fatal Collision Rate	8.7	2.9	5.7	0.0	0.0	3.3
Total Collision Rate	206.9	225.8	172.6	172.4	111.7	176.7

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 28	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collis ions	0	1	0	1	2	4
Fatalities	0	1	0	1	2	4
Total Collisions	27	32	30	33	42	164
Average Daily Traffic	690	680	700	700	780	3,550
Fatal Collision Rate	0.0	3.3	0.0	3.2	5.8	$\mathbf{2}$
Total Collision Rate	89.0	107.0	97.4	107.2	122.4	$\mathbf{1 0 5 . 0}$

SH 33
SHal Collisions
Fatalities
Fatal Collis ions
Tot
A verage Daily Traffic

SH 36	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	1	2	3
Fatalities	0	0	0	1	2	3
Total Collisions	34	41	40	55	55	225
A verage Daily Traffic	439	464	543	543	664	2,654
Fatal Collision Rate	0.0	0.0	0.0	7.5	12.3	$\mathbf{4 . 6}$
Total Collis ion Rate	316.3	361.2	301.0	413.9	338.4	$\mathbf{3 4 6 . 5}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 37	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	1	0	0	1
Fatalities	0	0	1	0	0	1
Total Collis ions	14	4	8	11	2	39
Average Daily Traffic	370	360	360	370	370	1,830
Fatal Collision Rate	0.0	0.0	24.4	0.0	0.0	$\mathbf{4 . 8}$
Total Collision Rate	331.9	97.5	194.9	260.8	47.4	$\mathbf{1 8 7 . 0}$

SH 39	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	\mathbf{c} (998-2002
Totals						

SH 41	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	2	0	2	1	1	6
Fatalities	2	0	2	1	1	6
Total Collisions	128	132	134	105	146	645
Average Daily Traffic	5,173	5,190	5,311	5,707	5,665	27,046
Fatal Collision Rate	2.7	0.0	2.6	1.2	1.2	$\mathbf{1 . 6}$
Total Collision Rate	173.2	178.0	176.6	128.8	180.4	$\mathbf{1 6 6 . 9}$

SH 44	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	5	2	2	2	0	11
Fatalities	5	2	2	2	0	11
Total Collisions	155	161	168	190	200	874
Average Daily Traffic	10,045	10,244	10,911	11,991	12,407	55,599
Fatal Collision Rate	5.9	2.3	2.2	2.0	0.0	$\mathbf{2 . 3}$
Total Collision Rate	182.8	186.2	182.4	187.7	191.0	$\mathbf{1 8 6 . 2}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 45	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	2	0	3	0	0	5
Fatalities	2	0	3	0	0	5
Total Collisions	155	160	184	168	130	797
Average Daily Traffic	5,280	5,340	5,380	5,659	5,698	27,357
Fatal Collision Rate	5.7	0.0	8.5	0.0	0.0	$\mathbf{2 . 8}$
Total Collision Rate	445.5	454.7	519.0	450.5	346.2	$\mathbf{4 4 2 . 1}$

SH 46	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	1	1	1	1	1	5
Fatalities	1	1	1	1	1	5
Total Collisions	52	44	57	46	33	232
Average Daily Traffic	10,045	10,244	10,911	11,991	12,407	55,599
Fatal Collision Rate	3.2	3.2	3.2	3.1	2.9	$\mathbf{3 . 1}$
Total Collision Rate	164.3	139.1	179.6	141.6	95.6	$\mathbf{1 4 3 . 2}$

SH $\mathbf{4 8}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	1	0	0	0	1
Fatalities	0	1	0	0	0	1
Total Collisions	35	49	39	16	14	153
Average Daily Traffic	2,200	2,170	2,110	1,920	1,980	10,380
Fatal Collision Rate	0.0	5.2	0.0	0.0	0.0	$\mathbf{1 . 1}$
Total Collision Rate	178.6	253.5	207.5	93.5	79.4	$\mathbf{1 6 5 . 4}$

SH 51	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	1998-2002 Totals
Fatal Collisions	1	4	2	0	1	8
Fatalities	1	4	2	0	1	8
Total Collisions	74	60	73	66	65	338
Average Daily Traffic	810	860	880	910	910	4,370
Fatal Collision Rate	3.6	13.6	6.6	0.0	3.2	$\mathbf{5 . 4}$
Total Collision Rate	267.0	203.9	242.4	212.0	208.8	$\mathbf{2 2 6 . 0}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 52	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	1	0	1	1	0	3
Fatalities	1	0	1	1	0	3
Total Collisions	56	84	72	69	79	360
A verage Daily Traffic	2,010	2,050	2,090	2,100	2,130	10,380
Fatal Collision Rate	2.5	0.0	2.4	2.4	0.0	$\mathbf{1 . 5}$
Total Collision Rate	141.0	207.4	174.4	166.3	187.7	$\mathbf{1 7 5 . 6}$

SH 53	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	2	0	1	0	0	3
Fatalities	2	0	1	0	0	3
Total Collisions	25	28	76	40	51	220
Average Daily Traffic	5,933	5,978	6,125	6,547	6,569	31,152
Fatal Collision Rate	6.6	0.0	3.2	0.0	0.0	$\mathbf{1 . 9}$
Total Collision Rate	82.2	91.4	242.1	119.2	151.5	$\mathbf{1 3 7 . 8}$

SH 54	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	1	0	1	1	3
Fatalities	0	1	0	2	1	4
Total Collisions	14	18	24	14	19	89
Average Daily Traffic	1,830	1,820	1,780	1,790	1,840	9,060
Fatal Collision Rate	0.0	9.7	0.0	9.9	9.6	$\mathbf{5 . 8}$
Total Collision Rate	135.1	174.7	238.2	138.2	182.4	$\mathbf{1 7 3 . 5}$

SH 55	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	7	7	2	3	2	21
Fatalities	8	8	2	3	2	23
Total Collisions	478	421	530	551	606	2,586
Average Daily Traffic	4,684	5,084	5,282	5,628	5,822	26,499
Fatal Collision Rate	3.1	2.8	0.8	1.1	0.7	$\mathbf{1 . 6}$
Total Collision Rate	209.0	169.6	205.5	200.5	213.2	$\mathbf{1 9 9 . 9}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 57	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	1	2	1	0	4
Fatalities	0	1	2	1	0	4
Total Collisions	27	25	25	24	28	129
Average Daily Traffic	1,340	1,330	1,350	1,350	1,370	6,740
Fatal Collision Rate	0.0	5.5	10.9	5.5	0.0	$\mathbf{4 . 4}$
Total Collision Rate	148.3	138.3	136.3	130.8	150.4	$\mathbf{1 4 0 . 8}$

SH 67	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	\mathbf{c} (998-2002
Totals						

SH 69	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	0	0	0
Fatalities	0	0	0	0	0	0
Total Collisions	43	81	63	60	62	309
Average Daily Traffic	8,443	8,562	8,595	8,702	11,054	45,356
Fatal Collision Rate	0.0	0.0	0.0	0.0	0.0	$\mathbf{0 . 0}$
Total Collision Rate	173.0	321.2	248.9	234.1	190.5	$\mathbf{2 3 1 . 3}$

SH 71	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	0	0	0
Fatalities	0	0	0	0	0	0
Total Collisions	4	2	3	5	9	23
Average Daily Traffic	390	390	290	290	290	1,650
Fatal Collision Rate	0.0	0.0	0.0	0.0	0.0	$\mathbf{0 . 0}$
Total Collision Rate	97.6	48.8	98.4	164.1	295.3	$\mathbf{1 3 2 . 7}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 75	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	4	3	2	6	4	19
Fatalities	5	3	2	6	5	21
Total Collisions	168	181	143	170	161	823
Average Daily Traffic	2,690	2,670	2,670	2,720	2,810	13,560
Fatal Collision Rate	2.4	1.8	1.2	3.5	2.3	$\mathbf{2 . 2}$
Total Collision Rate	100.3	108.8	86.0	100.3	92.0	$\mathbf{9 7 . 4}$

SH 77	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	2	0	0	1	3
Fatalities	0	2	0	0	1	3
Total Collisions	15	28	15	25	24	107
Average Daily Traffic	660	660	660	670	690	3,340
Fatal Collision Rate	0.0	27.1	0.0	0.0	12.9	$\mathbf{8 . 0}$
Total Collision Rate	203.0	378.9	203.0	333.3	310.6	$\mathbf{2 8 6 . 1}$

SH 78	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	0	0	2	1	3
Fatalities	0	0	0	2	1	3
Total Collis ions	34	25	23	35	44	161
Average Daily Traffic	553	554	579	617	614	2,917
Fatal Collision Rate	0.0	0.0	0.0	9.7	4.9	$\mathbf{3 . 1}$
Total Collision Rate	183.3	134.3	118.3	169.0	213.6	$\mathbf{1 6 4 . 4}$

SH 81	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	0	1	0	1	3	5
Fatalities	0	1	0	1	4	6
Total Collisions	24	35	26	26	44	155
A verage Daily Traffic	1,283	1,263	1,284	1,244	1,244	6,318
Fatal Collision Rate	0.0	6.3	0.0	6.4	19.3	$\mathbf{6 . 3}$
Total Collision Rate	149.3	221.2	161.7	166.9	282.4	$\mathbf{1 9 5 . 9}$

Collision Information for Selected Routes on the State Highway System: 1998-2002

SH 97	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	2	0	0	0	0	2
Fatalities	2	0	0	0	0	2
Total Collisions	22	24	24	28	20	118
Average Daily Traffic	600	600	615	615	675	3,105
Fatal Collision Rate	19.2	0.0	0.0	0.0	0.0	$\mathbf{3 . 7}$
Total Collision Rate	211.6	230.8	225.2	262.7	170.9	$\mathbf{2 1 9 . 3}$

SH 200	1998	1999	2000	2001	2002	$\begin{gathered} 1998-2002 \\ \text { Totals } \end{gathered}$
Fatal Collisions	1	1	3	0	0	5
Fatalities	2	2	3	0	0	7
Total Collisions	59	59	56	36	54	264
Average Daily Traffic	2,838	2,962	3,028	3,076	3,123	15,027
Fatal Collision Rate	2.8	2.6	7.8	0.0	0.0	2.6
Total Collision Rate	162.9	156.1	144.9	91.7	135.5	137.7

I-15	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	22	13	8	10	6	59
Fatalities	28	14	9	14	6	71
Total Collis ions	569	499	464	540	497	2,569
A verage Daily Traffic	9,000	9,560	9,560	9,580	9,820	47,520
Fatal Collision Rate	3.4	1.9	1.2	1.5	0.9	$\mathbf{1 . 7}$
Total Collision Rate	88.4	73.0	67.8	78.8	70.7	$\mathbf{7 5 . 6}$

I-84	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$
Totals						

Collision Information for Selected Routes on the State Highway System: 1998-2002

I-86	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$
Totals						

$\mathbf{I - 9 0}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collisions	2	3	5	5	2	17
Fatalities	4	4	5	5	3	21
Total Collisions	355	394	412	432	492	2,085
A verage Daily Traffic	14,230	15,153	15,296	15,566	16,023	76,268
Fatal Collision Rate	0.5	0.6	1.1	1.0	0.4	$\mathbf{0 . 7}$
Total Collision Rate	80.2	84.0	87.1	89.7	99.2	$\mathbf{8 8 . 3}$

I-184	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{1 9 9 8 - 2 0 0 2}$ Totals
Fatal Collis ions	0	1	1	0	0	2
Fatalities	0	1	1	0	0	2
Total Collisions	73	63	73	53	52	314
Average Daily Traffic	52,400	48,150	51,830	55,290	54,290	257,480
Fatal Collision Rate	0.0	1.6	1.5	0.0	0.0	$\mathbf{0 . 6}$
Total Collision Rate	105.4	99.0	106.6	72.5	72.5	$\mathbf{9 0 . 7}$

State Highway Information by Roadway Classification and Speed Limit: 2002

APPENDIX C: Five-Year Collision History

Appendix C: Idaho Fatal and Injury Collision Data, Five-Year History

Appendix C: Idaho Fatal and Injury Collision Data, Five-Year History

Table C-2							
	1998	1999	2000	2001	2002	$\begin{gathered} \text { Change } \\ \text { 2001-2002 } \end{gathered}$	Avg. Change 1998-2001
Total Vehicles - Fatal/Injury Collisions	16,743	16,939	17,287	16,932	17,825	5.3\%	0.4\%
Passenger Cars - Fatal/Injury Collisions	8,678	8,638	8,820	8,433	8,839	4.8\%	-0.9\%
\% of Vehicles	51.8\%	51.0\%	51.0\%	49.8\%	49.6\%	-0.4\%	-1.3\%
Pickups, Sport Utility Vehicles, Vans, and							
PU's with Campers - Fatal/Injury Collis ions	6,583	6,774	6,924	6,930	7,343	6.0\%	1.7\%
\% of Vehicles	39.3\%	40.0\%	40.1\%	40.9\%	41.2\%	0.7\%	1.4\%
Commercial Motor Vehicles - Fatal/Injury Collis ions	581	630	559	611	590	-3.4\%	2.2\%
\% of Vehicles	3.5\%	3.7\%	3.2\%	3.6\%	3.3\%	-8.3\%	1.9\%
Motorcycles - Fatal/Injury Collisions	267	231	326	354	365	3.1\%	12.1\%
\% of Vehicles	1.6\%	1.4\%	1.9\%	2.1\%	2.0\%	-2.1\%	11.6\%
Bicycles - Fatal/Injury Collis ions	294	353	335	275	316	14.9\%	-1.0\%
\% of Vehicles	1.8\%	2.1\%	1.9\%	1.6\%	1.8\%	9.2\%	-1.5\%
Pedestrians - Fatal/Injury Collisions	205	188	206	190	206	8.4\%	-2.2\%
\% of Vehicles	1.2\%	1.1\%	1.2\%	1.1\%	1.2\%	3.0\%	-2.6\%

Appendix C: Idaho Fatal and Injury Collision Data, Five-Year History

[^0]: * 18-19 y ear old drivers combined
 ** 20-24 year old drivers combined

